We prove the existence of a weak solution and of a strong solution (locally in time) of the equations which govern the motion of viscous incompressible non-homogeneous fluids. Then we discuss the decay problem.
Si dimostra l'esistenza di una soluzione debole e di una soluzione forte (in piccolo) per le equazioni che governano il moto dei fluidi viscosi incomprimibili con densità non costante. Inoltre si discute il problema dell'andamento asintotico.
@article{RLIN_1990_9_1_4_281_0, author = {Rodolfo Salvi}, title = {The equations of viscous incompressible nonhomogeneous fluids in noncylindrical domains: on the existence and regularity}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {1}, year = {1990}, pages = {281-284}, zbl = {0709.76034}, mrnumber = {1096820}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1990_9_1_4_281_0} }
Salvi, Rodolfo. The equations of viscous incompressible nonhomogeneous fluids in noncylindrical domains: on the existence and regularity. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990) pp. 281-284. http://gdmltest.u-ga.fr/item/RLIN_1990_9_1_4_281_0/
[1] Resolution of boundary value problems for non-homogeneous fluids. Dokl. Akad. Nauk., 216, 1974, 1008-1010.
,[2] Unique solvability of an initial boundary value problem for the viscous incompressible non-homogeneous fluids. J. Sov. Math., 9, 1978, 697-749. | Zbl 0401.76037
- ,[3] On the existence of weak solutions of a non-linear mixed problem for non-homogeneous fluids in a time dependent domain. C.M.U.C., 26, 1985, 185-199. | MR 797303 | Zbl 0591.76042
,[4] On the Navier-Stokes equations in non-cylindrical domains: On the Existence and Regularity. Math. Z., 199, 1988, 153-170. | MR 958645 | Zbl 0697.76033
,[5] The equations of viscous incompressible non-homogeneous fluid: On the Existence and Regularity. Submitted to J. Australian Math. Soc. | Zbl 0732.76032
, , Basic linear partial differential equations. Academic Press, New York1975.