An integrality criterion for elliptic modular forms
Mori, Andrea
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990), p. 3-9 / Harvested from Biblioteca Digitale Italiana di Matematica

Let f be an elliptic modular form level of N. We present a criterion for the integrality of f at primes not dividing N. The result is in terms of the values at CM points of the forms obtained applying to f the iterates of the Maaß differential operators.

Si enuncia un criterio di integralità per i primi non dividenti il livello per forme modulari ellittiche. Il criterio si basa sui valori assunti in certi punti particolari del semipiano a parte immaginaria positiva dalle forme ottenute applicando gli iterati degli operatori di Maaß alla forma in esame.

Publié le : 1990-02-01
@article{RLIN_1990_9_1_1_3_0,
     author = {Andrea Mori},
     title = {An integrality criterion for elliptic modular forms},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {1},
     year = {1990},
     pages = {3-9},
     zbl = {0702.11025},
     mrnumber = {1081819},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1990_9_1_1_3_0}
}
Mori, Andrea. An integrality criterion for elliptic modular forms. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990) pp. 3-9. http://gdmltest.u-ga.fr/item/RLIN_1990_9_1_1_3_0/

[1] Harris, M., A note on three lemmas of Shimura. Duke Math. J., 46, 1979, 871-879. | MR 552530 | Zbl 0433.10016

[2] Harris, M., Special values of zeta functions attached to Siegel modular forms. Ann. scient. Ec. Norm. Sup., IV-4, 1981, 77-120. | MR 618732 | Zbl 0465.10022

[3] Igusa, J., On the algebraic theory of elliptic modular functions. J. Math. Soc. Japan, 20, 1968, 96-106. | MR 240103 | Zbl 0164.21101

[4] Katz, N., p-adic properties of modular schemes and modular forms. In: Modular functions of one variable III. LNM, Springer, 350, 1973, 70-189. | MR 447119 | Zbl 0271.10033

[5] Katz, N., p-adic interpolation of real analytic Eisenstein series. Annals of Math., 104, 1976, 459-571. | MR 506271 | Zbl 0354.14007

[6] Katz, N., p-adic L-functions for CM fields. Inventiones Math., 49, 1981, 199-297. | MR 513095 | Zbl 0417.12003

[7] Katz, N., Serre-Tate local moduli. In: Surfaces Algebraiques. LMN, Springer, 868, 1981, 138-202. | MR 638600 | Zbl 0477.14007

[8] Maaß, H., Die Differentialgleichungen in der Théorie der Siegelschen Modulfunktionen. Math. Ann., 126, 1953, 44-68. | MR 65584 | Zbl 0053.05602

[9] Mori, A., Integrality of elliptic modular forms via Maaß operators. Ph. D. thesis, Brandeis Univ., 1989. | MR 2637460

[10] Ramanujan, S., On certain arithmetical functions. Trans. Camb. Phil. Soc, 22, 1916, 159-184.

[11] Serre, J. P., Une interpretation des congruences relatives à la fonction τ de Ramanujan. Séminaire Delonge-Pisot-Poitou, 1967-68, exposé 14. | Zbl 0186.36902

[12] Serre, J. P., Congruences et formes modulaires. Séminaire Bourbaki, exposé 416, LNM, Springer, 317, 1973. | MR 466020 | Zbl 0276.14013

[13] Shimura, G., Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten and Princeton Univ. Press, 1971. | MR 314766 | Zbl 0872.11023

[14] Swinnerton-Dyer, H. P. F., On l-adic representations and congruences for coefficients of modular forms. In: Modular functions of one variable III. LNM, Springer, 350, 1973, 1-56. | MR 406931 | Zbl 0267.10032