Let be an elliptic modular form level of N. We present a criterion for the integrality of at primes not dividing N. The result is in terms of the values at CM points of the forms obtained applying to the iterates of the Maaß differential operators.
Si enuncia un criterio di integralità per i primi non dividenti il livello per forme modulari ellittiche. Il criterio si basa sui valori assunti in certi punti particolari del semipiano a parte immaginaria positiva dalle forme ottenute applicando gli iterati degli operatori di Maaß alla forma in esame.
@article{RLIN_1990_9_1_1_3_0, author = {Andrea Mori}, title = {An integrality criterion for elliptic modular forms}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {1}, year = {1990}, pages = {3-9}, zbl = {0702.11025}, mrnumber = {1081819}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1990_9_1_1_3_0} }
Mori, Andrea. An integrality criterion for elliptic modular forms. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990) pp. 3-9. http://gdmltest.u-ga.fr/item/RLIN_1990_9_1_1_3_0/
[1] A note on three lemmas of Shimura. Duke Math. J., 46, 1979, 871-879. | MR 552530 | Zbl 0433.10016
,[2] Special values of zeta functions attached to Siegel modular forms. Ann. scient. Ec. Norm. Sup., IV-4, 1981, 77-120. | MR 618732 | Zbl 0465.10022
,[3] On the algebraic theory of elliptic modular functions. J. Math. Soc. Japan, 20, 1968, 96-106. | MR 240103 | Zbl 0164.21101
,[4] p-adic properties of modular schemes and modular forms. In: Modular functions of one variable III. LNM, Springer, 350, 1973, 70-189. | MR 447119 | Zbl 0271.10033
,[5] p-adic interpolation of real analytic Eisenstein series. Annals of Math., 104, 1976, 459-571. | MR 506271 | Zbl 0354.14007
,[6] p-adic L-functions for CM fields. Inventiones Math., 49, 1981, 199-297. | MR 513095 | Zbl 0417.12003
,[7] Serre-Tate local moduli. In: Surfaces Algebraiques. LMN, Springer, 868, 1981, 138-202. | MR 638600 | Zbl 0477.14007
,[8] Die Differentialgleichungen in der Théorie der Siegelschen Modulfunktionen. Math. Ann., 126, 1953, 44-68. | MR 65584 | Zbl 0053.05602
,[9] Integrality of elliptic modular forms via Maaß operators. Ph. D. thesis, Brandeis Univ., 1989. | MR 2637460
,[10] On certain arithmetical functions. Trans. Camb. Phil. Soc, 22, 1916, 159-184.
,[11] Une interpretation des congruences relatives à la fonction de Ramanujan. Séminaire Delonge-Pisot-Poitou, 1967-68, exposé 14. | Zbl 0186.36902
,[12] Congruences et formes modulaires. Séminaire Bourbaki, exposé 416, LNM, Springer, 317, 1973. | MR 466020 | Zbl 0276.14013
,[13] | MR 314766 | Zbl 0872.11023
, Introduction to the arithmetic theory of automorphic functions. Iwanami Shoten and Princeton Univ. Press, 1971.[14] On l-adic representations and congruences for coefficients of modular forms. In: Modular functions of one variable III. LNM, Springer, 350, 1973, 1-56. | MR 406931 | Zbl 0267.10032
,