Global analytic and Gevrey surjectivity of the Mizohata operator D2+ix22kD1
Cattabriga, Lamberto ; Zanghirati, Luisa
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990), p. 37-39 / Harvested from Biblioteca Digitale Italiana di Matematica

The surjectivity of the operator D2+ix22kD1 from the Gevrey space EsR2, s1, onto itself and its non-surjectivity from EsR3 to EsR3 is proved.

Si prova che l'operatore D2+ix22kD1 è suriettivo dallo spazio di Gevrey EsR2, s1, su sé stesso e che ciò non accade per lo stesso operatore da EsR3 ad EsR3.

Publié le : 1990-02-01
@article{RLIN_1990_9_1_1_37_0,
     author = {Lamberto Cattabriga and Luisa Zanghirati},
     title = {Global analytic and Gevrey surjectivity of the Mizohata operator \( D\_2 + i x^{2k}\_{2} D\_{1} \)},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {1},
     year = {1990},
     pages = {37-39},
     zbl = {0707.35036},
     mrnumber = {1081824},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1990_9_1_1_37_0}
}
Cattabriga, Lamberto; Zanghirati, Luisa. Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990) pp. 37-39. http://gdmltest.u-ga.fr/item/RLIN_1990_9_1_1_37_0/

[1] Braun, R. W. - Meise, R. - Vogt, D., Applications of the projective limit functor to convolution and partial differential equations. Proceeding of the NATO ASW on Fréchet spaces, Istanbul, August 1988, D. Reidel Publishing Comp. (to appear). | MR 1083556 | Zbl 0726.46022

[2] Cattabriga, L., Solutions in Gevrey spaces of partial differential equations with constant coefficients. Astérisque, 89-90, 1981, 129-151. | MR 666406 | Zbl 0496.35018

[3] Cattabriga, L., On the surjectivity of differential polynomials on Gevrey spaces. Rend. Sem. Mat. Univ. Politec. Torino, Fasc. speciale, Convegno Linear partial and pseudodifferential operators, Torino, 30 Sett. - 2 Ott. 1982, 41, 1983, 81-89. | MR 745976 | Zbl 0561.35008

[4] De Giorgi, E., Solutions analytiques des équations aux dérivées partielles à coefficients constants. Séminaire Goulauic-Schwartz 1971-72, Equations aux dérivées partielles et analyse fonctionelle, Exp. N. 29, Ecole Polytech. Centre de Math., Paris 1972. | MR 397137 | Zbl 0244.35017

[5] De Giorgi, E. - Cattabriga, L., Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti. Boll. Un. Mat. Ital. (4), 4, 1971, 1015-1027. | MR 382820 | Zbl 0224.35018

[6] Ehrenpreis, L., Lewy's operator and its ramifications. J. Funct. Anal, 68, 1986, 329-265. | MR 859139 | Zbl 0638.35002

[7] Friberg, J., Estimates for partially hypoelliptic differential operators. Medd. Lund Univ. Mat. Sem., 17, 1963, 1-93. | MR 157109 | Zbl 0139.28403

[8] Hörmander, L., On the existence of real analytic solutions of partial equations with constant coefficients. Inventiones Math., 21, 1973, 151-182. | MR 336041 | Zbl 0282.35015

[9] Hörmander, L., The analysis of linear partial differential operators. Springer Verlag, vol. IV, 1983. | Zbl 0521.35002

[10] Kawai, T., On the global existence of real analytic solutions of linear differential equations I and II. J. Math. Soc. Japan, 24, 1972, 481-517; 25, 1973, 644-647. | MR 310412 | Zbl 0259.35062

[11] Kawai, T., On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations. Publ. RIMS Kyoto University, 555, 1986.

[12] Komatsu, H., An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual. J. Fac. Sci. Univ. Tokyo, Sec. IA, 26, 1979, 239-254. | MR 550685 | Zbl 0424.46032

[13] Mizohata, S., Solutions nulles et solutions non analytiques. J. Math. Kyoto Univ., 1, 1962, 271-302. | MR 142873 | Zbl 0106.29601

[14] Rodino, L., On linear partial differential operators with multiple characteristics. Proceedings Conf. on Partial Differential Equations (Holzhau, GDR, 1988), Teubner Text zur Mathematik. | MR 1105815 | Zbl 0681.35093

[15] Zampieri, G., An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations. Boll. Un. Mat. It. (6), V-B, 1986, 361-392. | MR 860634 | Zbl 0624.35011