The surjectivity of the operator from the Gevrey space , , onto itself and its non-surjectivity from to is proved.
Si prova che l'operatore è suriettivo dallo spazio di Gevrey , , su sé stesso e che ciò non accade per lo stesso operatore da ad .
@article{RLIN_1990_9_1_1_37_0, author = {Lamberto Cattabriga and Luisa Zanghirati}, title = {Global analytic and Gevrey surjectivity of the Mizohata operator \( D\_2 + i x^{2k}\_{2} D\_{1} \)}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {1}, year = {1990}, pages = {37-39}, zbl = {0707.35036}, mrnumber = {1081824}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1990_9_1_1_37_0} }
Cattabriga, Lamberto; Zanghirati, Luisa. Global analytic and Gevrey surjectivity of the Mizohata operator \( D_2 + i x^{2k}_{2} D_{1} \). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990) pp. 37-39. http://gdmltest.u-ga.fr/item/RLIN_1990_9_1_1_37_0/
[1] Applications of the projective limit functor to convolution and partial differential equations. Proceeding of the NATO ASW on Fréchet spaces, Istanbul, August 1988, D. Reidel Publishing Comp. (to appear). | MR 1083556 | Zbl 0726.46022
- - ,[2] Solutions in Gevrey spaces of partial differential equations with constant coefficients. Astérisque, 89-90, 1981, 129-151. | MR 666406 | Zbl 0496.35018
,[3] On the surjectivity of differential polynomials on Gevrey spaces. Rend. Sem. Mat. Univ. Politec. Torino, Fasc. speciale, Convegno Linear partial and pseudodifferential operators, Torino, 30 Sett. - 2 Ott. 1982, 41, 1983, 81-89. | MR 745976 | Zbl 0561.35008
,[4] Solutions analytiques des équations aux dérivées partielles à coefficients constants. Séminaire Goulauic-Schwartz 1971-72, Equations aux dérivées partielles et analyse fonctionelle, Exp. N. 29, Ecole Polytech. Centre de Math., Paris 1972. | MR 397137 | Zbl 0244.35017
,[5] Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti. Boll. Un. Mat. Ital. (4), 4, 1971, 1015-1027. | MR 382820 | Zbl 0224.35018
- ,[6] Lewy's operator and its ramifications. J. Funct. Anal, 68, 1986, 329-265. | MR 859139 | Zbl 0638.35002
,[7] Estimates for partially hypoelliptic differential operators. Medd. Lund Univ. Mat. Sem., 17, 1963, 1-93. | MR 157109 | Zbl 0139.28403
,[8] On the existence of real analytic solutions of partial equations with constant coefficients. Inventiones Math., 21, 1973, 151-182. | MR 336041 | Zbl 0282.35015
,[9] IV, 1983. | Zbl 0521.35002
, The analysis of linear partial differential operators. Springer Verlag, vol.[10] On the global existence of real analytic solutions of linear differential equations I and II. J. Math. Soc. Japan, 24, 1972, 481-517; 25, 1973, 644-647. | MR 310412 | Zbl 0259.35062
,[11] On the global existence of real analytic solutions and hyperfunction solutions of linear differential equations. Publ. RIMS Kyoto University, 555, 1986.
,[12] An analogue of the Cauchy-Kowalevsky theorem for ultradifferentiable functions and a division theorem of ultradistributions as its dual. J. Fac. Sci. Univ. Tokyo, Sec. IA, 26, 1979, 239-254. | MR 550685 | Zbl 0424.46032
,[13] Solutions nulles et solutions non analytiques. J. Math. Kyoto Univ., 1, 1962, 271-302. | MR 142873 | Zbl 0106.29601
,[14] On linear partial differential operators with multiple characteristics. Proceedings Conf. on Partial Differential Equations (Holzhau, GDR, 1988), Teubner Text zur Mathematik. | MR 1105815 | Zbl 0681.35093
,[15] An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations. Boll. Un. Mat. It. (6), V-B, 1986, 361-392. | MR 860634 | Zbl 0624.35011
,