On the Aronszajn property for integral equations in Banach space
Szufla, Stanisław
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989), p. 93-99 / Harvested from Biblioteca Digitale Italiana di Matematica

For the integral equation (1) below we prove the existence on an interval J=[0,a] of a solution x with values in a Banach space E, belonging to the class Lp(J,E), p>1. Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.

Usando il concetto di misura di non-compattezza si danno delle condizioni di compattezza per l'insieme di tutte le soluzioni Lp di un'equazione integrale non lineare di Volterra in uno spazio di Banach.

Publié le : 1989-12-01
@article{RLINA_1989_8_83_1_93_0,
     author = {Stanis\l aw Szufla},
     title = {On the Aronszajn property for integral equations in Banach space},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {83},
     year = {1989},
     pages = {93-99},
     zbl = {0739.45013},
     mrnumber = {1142445},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_93_0}
}
Szufla, Stanisław. On the Aronszajn property for integral equations in Banach space. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 93-99. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_93_0/

[1] Aronszajn, N., 1942. Le correspondant topologique de l'unicité dans la théorie des équations différentielles. Ann. of Math., 43: 730-738. | MR 7195 | Zbl 0061.17106

[2] Browder, F.E. and Gupta, C.P., 1969. Topological degree and nonlinear mappings of analytical type in Banach space. J. Math. Anal. Appl., 26: 390-402. | MR 257826 | Zbl 0176.45401

[3] Deimling, K., 1977. Ordinary differential equations in Banach spaces. Lect. Notes Math., 596: Springer Verlag. | MR 463601 | Zbl 0361.34050

[4] Lakshmikantham, V. and Leela, S., 1981. Nonlinear differential equations in abstract spaces. Pergamon Press. | MR 616449 | Zbl 0456.34002

[5] Martin, R.H., 1976. Nonlinear operators and differential equations in Banach spaces. Wiley, New York. | MR 492671

[6] Mönch, H., 1980. Boundary value problems for nonlinear ordinary differential equations of second order in Banach space. Nonlinear Analysis, 4: 985-999. | MR 586861 | Zbl 0462.34041

[7] Orlicz, W. and Szufla, S., 1982. On some classes of nonlinear Volterra integral equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 239-250. | MR 673260 | Zbl 0501.45013

[8] Sadovskii, B.N., 1972. Limit-compact and condensing operators. Russian Mah. Surveys, 27: 85-155. | MR 428132 | Zbl 0243.47033

[9] Szufla, S., 1982. On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 507-515. | MR 718727 | Zbl 0532.34045