For the integral equation (1) below we prove the existence on an interval of a solution with values in a Banach space , belonging to the class , . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.
Usando il concetto di misura di non-compattezza si danno delle condizioni di compattezza per l'insieme di tutte le soluzioni di un'equazione integrale non lineare di Volterra in uno spazio di Banach.
@article{RLINA_1989_8_83_1_93_0, author = {Stanis\l aw Szufla}, title = {On the Aronszajn property for integral equations in Banach space}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {93-99}, zbl = {0739.45013}, mrnumber = {1142445}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_93_0} }
Szufla, Stanisław. On the Aronszajn property for integral equations in Banach space. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 93-99. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_93_0/
[1] Le correspondant topologique de l'unicité dans la théorie des équations différentielles. Ann. of Math., 43: 730-738. | MR 7195 | Zbl 0061.17106
, 1942.[2] Topological degree and nonlinear mappings of analytical type in Banach space. J. Math. Anal. Appl., 26: 390-402. | MR 257826 | Zbl 0176.45401
and , 1969.[3] 596: Springer Verlag. | MR 463601 | Zbl 0361.34050
, 1977. Ordinary differential equations in Banach spaces. Lect. Notes Math.,[4] | MR 616449 | Zbl 0456.34002
and , 1981. Nonlinear differential equations in abstract spaces. Pergamon Press.[5] | MR 492671
, 1976. Nonlinear operators and differential equations in Banach spaces. Wiley, New York.[6] Boundary value problems for nonlinear ordinary differential equations of second order in Banach space. Nonlinear Analysis, 4: 985-999. | MR 586861 | Zbl 0462.34041
, 1980.[7] On some classes of nonlinear Volterra integral equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 239-250. | MR 673260 | Zbl 0501.45013
and , 1982.[8] Limit-compact and condensing operators. Russian Mah. Surveys, 27: 85-155. | MR 428132 | Zbl 0243.47033
, 1972.[9] On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 507-515. | MR 718727 | Zbl 0532.34045
, 1982.