We develolp a new method to solve an evolution equation in a non-cylindrical domain, by reduction to an abstract evolution equation..
Si dà un nuovo metodo per risolvere un'equazione di evoluzione in un dominio non cilindrico, riconducendola a un'equazione astratta.
@article{RLINA_1989_8_83_1_73_0, author = {Piermarco Cannarsa and Giuseppe Da Prato and Jean-Paul Zol\'esio}, title = {Evolution equations in non-cylindrical domains}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {73-77}, zbl = {0752.35020}, mrnumber = {1142441}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_73_0} }
Cannarsa, Piermarco; Da Prato, Giuseppe; Zolésio, Jean-Paul. Evolution equations in non-cylindrical domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 73-77. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_73_0/
[1] Some existence and regularity results for abstract non-autonomous parabolic equations. J. Math. Anal. Appl., 99: 9-61. | MR 732703 | Zbl 0555.34051
and , 1984.[2] Existence and sharp regularity results for linear parabolic non-autonomous integro-differential equations. Israel J. Math., 53 257-302. | MR 852481 | Zbl 0603.45019
and , 1986.[3] On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure. Appl. Math., 15: 119-147. | MR 147774 | Zbl 0109.32701
, 1962.[4] On the abstract evolution equations. Osaka Math. J., 14: 107-133. | MR 140954 | Zbl 0106.09302
and , 1962.[5] The material derivative. In: and , Editors, 1981. Optimization of distributed parameter structures, Vol. II. Sijthoff and Nordhoff, Alpen aan den Rijn, 5: 1089-1151.
,