We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the class.
Si fornisce un criterio tipo Wiener per la continuità della soluzione di un problema di ostacolo relativo ad un operatore ellittico degenere con peso di classe .
@article{RLINA_1989_8_83_1_63_0, author = {Marco Biroli and Umberto Mosco}, title = {Wiener criterion for degenerate elliptic obstacle problem}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {63-67}, zbl = {0751.35012}, mrnumber = {1142439}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_63_0} }
Biroli, Marco; Mosco, Umberto. Wiener criterion for degenerate elliptic obstacle problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 63-67. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_63_0/
[1] Wiener estimates at boundary points for degenerate elliptic equations. Boll. U.M.I., 6, 5(B): 689-706; Correction, 1988, Boll. U.M.I., 2-B, 7: 713. | Zbl 0634.35034
and , 1986.[2] Wiener estimates for degenerate elliptic equations II. Diff. Int. Eq., 2, 4: 511-523. | MR 996757 | Zbl 0733.35045
and , 1989.[3] The Wiener test for degenerate elliptic equations. Ann. Inst. Fourier, 3: 151-183. | MR 688024 | Zbl 0488.35034
, and , 1982.[4] The local regularity of solutions of degenerate elliptic equations. Comm. in PDE, 7, 1: 77-116. | MR 643158 | Zbl 0498.35042
, and , 1982.[5] Wiener obstacles. In «Seminar on nonlinear partial differential equation», College de France, ed. by and , VI, Pitman. | Zbl 0583.35038
and , 1985.[6] Regular points for elliptc equations with discontinuous coefficients. Ann. Sc. Norm. Sup. Pisa, 17: 47-77. | MR 161019 | Zbl 0116.30302
, and , 1963.[7] Wiener criterion and potential estimates for the obstacle problem. Indiana Un. Math. J., 36: 455-494. | MR 905606 | Zbl 0644.49005
, 1987.