We give a Wiener criterion for the continuity of an obstacle problem relative to an elliptic degenerate problem with a weight in the class.
Si fornisce un criterio tipo Wiener per la continuità della soluzione di un problema di ostacolo relativo ad un operatore ellittico degenere con peso di classe .
@article{RLINA_1989_8_83_1_63_0,
author = {Marco Biroli and Umberto Mosco},
title = {Wiener criterion for degenerate elliptic obstacle problem},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
volume = {83},
year = {1989},
pages = {63-67},
zbl = {0751.35012},
mrnumber = {1142439},
language = {en},
url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_63_0}
}
Biroli, Marco; Mosco, Umberto. Wiener criterion for degenerate elliptic obstacle problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 63-67. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_63_0/
[1] and , 1986. Wiener estimates at boundary points for degenerate elliptic equations. Boll. U.M.I., 6, 5(B): 689-706; Correction, 1988, Boll. U.M.I., 2-B, 7: 713. | Zbl 0634.35034
[2] and , 1989. Wiener estimates for degenerate elliptic equations II. Diff. Int. Eq., 2, 4: 511-523. | MR 996757 | Zbl 0733.35045
[3] , and , 1982. The Wiener test for degenerate elliptic equations. Ann. Inst. Fourier, 3: 151-183. | MR 688024 | Zbl 0488.35034
[4] , and , 1982. The local regularity of solutions of degenerate elliptic equations. Comm. in PDE, 7, 1: 77-116. | MR 643158 | Zbl 0498.35042
[5] and , 1985. Wiener obstacles. In «Seminar on nonlinear partial differential equation», College de France, ed. by and , VI, Pitman. | Zbl 0583.35038
[6] , and , 1963. Regular points for elliptc equations with discontinuous coefficients. Ann. Sc. Norm. Sup. Pisa, 17: 47-77. | MR 161019 | Zbl 0116.30302
[7] , 1987. Wiener criterion and potential estimates for the obstacle problem. Indiana Un. Math. J., 36: 455-494. | MR 905606 | Zbl 0644.49005