We state that in opportune tubular domains any two points are connected by a bounce trajectory and that there exist non-trivial periodic bounce trajectories.
Si stabilisce che in opportuni domini tubolari piani due punti qualunque sono congiungibili da una traiettoria di rimbalzo e inoltre esistono traiettorie periodiche di rimbalzo non banali.
@article{RLINA_1989_8_83_1_39_0, author = {Roberto Peirone}, title = {Bounce trajectories in plane tubular domains}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {39-42}, zbl = {0741.58021}, mrnumber = {1142435}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_39_0} }
Peirone, Roberto. Bounce trajectories in plane tubular domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 39-42. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_39_0/
[1] The propagation of singularities along gliding rays. Invent. Math., 41: 197-232. | MR 494322 | Zbl 0373.35053
and , 1977.[2] The bounce problem on n-dimensional Riemannian manifolds. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 70: 246-250.
and , 1981.[3] On the approximation of the elastic bounce problem on Riemannian manifolds. J. Differential Equations, 47: 227-245. | MR 688104 | Zbl 0498.58011
and , 1983.[4] Il problema del rimbalzo unidimensionale e sue approssimazioni con penalizzazioni non convesse. Rend. Mat., 13: 541-553. | Zbl 0461.73049
and , 1980.[5] Multiplicity of solutions for the bounce problem. J. Differential Equations, 54: 414-428. | MR 760380 | Zbl 0505.34006
, 1984.[6] Monthly research problems 1969-71. Amer. Math. Month., 78: 1113-1122. | MR 1536553
and , 1971.[7] Singularities of boundary value problems. II. Comm. Pure App. Math., 35: 129-168. | MR 644020 | Zbl 0546.35083
and , 1982.[8] Puzzles for Christmas. The New Scientist, 25 Dec. 1958: 1580-81 and 1597.
and , 1958.[9] Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux. Séminaire Bony-Sjöstrand-Meyer.
, 1984-85.[10] Illumination of bounded domains. Amer. Math. Month., 85: 359-361. | MR 482537 | Zbl 0399.52006
, 1978.[11] Dynamicl systems with elastic reflections. Ergodic properties of dispersing billiards (Russian). Uspehi Mat. Nauk, 25 (2): 141-192. | MR 274721
, 1970.[12] Billiard trajectories in a polyhedral angle (Russian). Uspehi Mat. Nauk, 33 (1): 229-230. | MR 488170 | Zbl 0415.28021
, 1978.