In the context of the linear, dynamic problem for elastic bodies with voids, a minimum principle in terms of mechanical energy is stated. Involving a suitable (Reiss type) function in the minimizing functional, the minimum character achieved in the Laplace-transform domain is preserved when going back to the original time domain. Initial-boundary conditions of quite general type are considered.
Nell'ambito dell'elastodinamica lineare per solidi porosi, si dimostra un principio di minimo in termini dell'energia meccanica. Introducendo un'opportuna funzione (tipo Reiss) nel funzionale in oggetto, il carattere di minimo ottenuto nel dominio delle trasformate di Laplace viene conservato tornando al dominio temporale originario. Si considerano inoltre condizioni iniziali ed al contorno alquanto generali.
@article{RLINA_1989_8_83_1_187_0, author = {Michele Ciarletta and Edoardo Scarpetta}, title = {A minimum principle in the dynamics of elastic materials with voids}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {187-193}, zbl = {0732.73067}, mrnumber = {1142457}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_187_0} }
Ciarletta, Michele; Scarpetta, Edoardo. A minimum principle in the dynamics of elastic materials with voids. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 187-193. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_187_0/
[1] A non-linear theory of elastic materials with voids. Arch. Rat. Mech. Anal., 72: 175. | MR 545517 | Zbl 0444.73018
and , 1979.[2] Linear elastic materials with voids. Journal of Elasticity, 13: 125. | Zbl 0523.73008
and , 1983.[3] Theory of thermoelasticity of granular materials. Rev. Roum. Sci. Techn. Mec. Appl., 24: 793. | Zbl 0425.73015
and , 1979.[4] Acceleration waves in granular materials. Mehanika, 6: 66. | Zbl 0479.73022
and , 1980.[5] A theory of thermoelastic materials with voids. Acta Mechanica, 60: 67. | Zbl 0597.73007
, 1986.[6] A continuum theory for granular materials. Arch. Rat. Mech. Anal., 44: 249. | MR 1553563 | Zbl 0243.76005
and , 1972.[7] Some results in the theory of elastic materials with voids. Journal of Elasticity, 15: 215. | MR 792978
, 1985.[8] Minimum principle for linear elastodynamics. Journal of Elasticity, 8: 35. | MR 468500 | Zbl 0376.73016
, 1978.[9] A principle of minimum transformed energy in linear elastodynamics. J. Appl. Mech., 37: 1147. | MR 280052 | Zbl 0208.27001
and , 1970.