A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory
Porco, Giacinto ; Spadea, Giuseppe ; Zinno, Raffaele
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989), p. 159-176 / Harvested from Biblioteca Digitale Italiana di Matematica

A shear deformation theory is developed to analyse the geometrically nonlinear behaviour of layered composite plates under transverse loads. The theory accounts for the transverse shear (as in the Reissner Mindlin plate theory) and large rotations (in the sense of the von Karman theory) suitable for simulating the behaviour of moderately thick plates. Square and rectangular plates are considered: the numerical results are obtained by a finite element computational procedure and are given for various boundary and loading conditions, a/b ratios, stacking and orientation of layers and material properties (E1/E2 ratio, E1/G ratio, etc.).

In questo lavoro si sviluppa una teoria che tiene conto della deformabilità tagliante allo scopo di analizzare il comportamento di piastre laminate composite sottoposte a carichi flettenti. La teoria tiene conto delle deformazioni dovute al taglio (nel senso della teoria delle piastre spesse di Reissner-Mindlin) e di rotazioni moderatamente grandi (nel senso della teoria di von Karman). I risultati numerici, relativi a piastre rettangolari, sono stati ottenuti attraverso una procedura computazionale agli elementi finiti considerando varie condizioni di vincolo e di carico, diversi valori del rapporto a/b, differenti spessori ed orientazioni delle lamine e proprietà dei materiali (rapporto E1/E2, rapporto E1/G, etc.).

Publié le : 1989-12-01
@article{RLINA_1989_8_83_1_159_0,
     author = {Giacinto Porco and Giuseppe Spadea and Raffaele Zinno},
     title = {A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {83},
     year = {1989},
     pages = {159-176},
     zbl = {0732.73027},
     mrnumber = {1142455},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_159_0}
}
Porco, Giacinto; Spadea, Giuseppe; Zinno, Raffaele. A geometrically nonlinear analysis of laminated composite plates using a shear deformation theory. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 159-176. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_159_0/

[1] Ashton, J.E. and Whitney, J.M., 1970. Theory of laminated plates. Technomic Publishing Co. Inc.

[2] Bruno, D., Leonardi, A. and Porco, G. Nonlinear analysis of thick sandwich plates. In «The Second East Asia-Pacific Conference on Structural Engng. and Constr., Chiang Mai, Thailand, 11-13 Jan. 1989».

[3] Calcote Lee, R., 1969. The analysis of laminated composite structures. Van Nostrand Reinhold Company.

[4] Chia, C.Y., 1980. Non linear analysis of plates. McGraw Hill Inc.

[5] Mindlin, R.D., 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Appl. Mech.: 31-38. | Zbl 0044.40101

[6] Pagano, N.J., 1967. Analysis of the flexure test of bidirectional composites. J. Comp. Mater., 1, n. 4: 336-343.

[7] Pagano, N.J., 1969. Exact solution for composite laminates in cylindrical bending. J. Comp. Mater., 3: 398-411.

[8] Pagano, N.J., 1970. Exact solutions for rectangular bi-directional composites and sandwich plates. J. Comp. Mater., 4: 20.

[9] Pagano, N.J., 1970. Influence of shear coupling in cylindrical bending of anisotropic laminates. J. Comp. Mater., 4: 330-343

[10] Panda, S.C. and Natarayan, R., 1979. Finite element analysis of laminated composite plates. Int. J. for Num. Meth. in Engng., 14: 69-79. | Zbl 0394.73073

[11] Reddy, J.N., 1984. An introduction to the finite element method. McGraw Hill Inc. | Zbl 0561.65079

[12] Reddy, J.N., 1984. Energy and variational methods in applied mechanics. John Wiley & Sons Inc. | Zbl 0635.73017

[13] Reddy, J.N. and Chao, W.C., 1981. Non linear bending of thick rectangular, laminated composite plates. Int. J. Non Linear Mech., 16, n. 3/4: 291-301. | Zbl 0475.73014

[14] Reissner, E. and Stavsky, Y., 1961. Bending and stretching of certain types of heterogeneous aelotropic elastic plates. Journal of Appl. Mech., 28: 402-408. | MR 138248 | Zbl 0100.20904

[15] Rennkan, Y. and Marvin Ito, Y., 1972. Analysis of unbalanced angle-ply rectangular plates. Int. J. Solids Structures, 8: 1283-1297. | Zbl 0245.73047

[16] Vinson, J.R. and Chou, T.W., 1975. Composite materials and their use in structures. Applied Science Publishers LTD, London.

[17] Whitney, J.M. and Leissa, A.W., 1969. Analysis of heterogeneous anisotropic plates. Journal of Appl. Mech.: 261-301. | Zbl 0181.52603

[18] Whitney, J.M. and Pagano, N.J., 1970. Shear deformation in heterogeneous anisotropic plates. Journal of Appl. Mech.: 1031-1036. | Zbl 0218.73078