It is shown that under certain conditions every holomorphic isometry for the Carathéodory or the Kobayashi distances is an isometry for the corrisponding metrics. These results are used to give a characterization of biholomorphic mappings between convex domains and complete circular domains.
Si dimostra che, sotto opportune condizioni, ogni isometria olomorfa per le distanze di Carathéodory o di Kobayashi è una isometria per le rispettive metriche. Si applicano questi risultati allo studio dei biolomorfismi tra domini convessi e domini circolari completi.
@article{RLINA_1989_8_83_1_139_0, author = {Sergio Venturini}, title = {On holomorphic isometries for the Kobayashi and Carath\'eodory distances on complex manifolds}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {139-145}, zbl = {0741.32018}, mrnumber = {1142452}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_139_0} }
Venturini, Sergio. On holomorphic isometries for the Kobayashi and Carathéodory distances on complex manifolds. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 139-145. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_139_0/
[1] The Kobayashi indicatrix at the center of a circular domain. Proc. Amer. Math. Soc, 88: 527-530. | MR 699426 | Zbl 0494.32008
, 1983.[2] Pseudodistances invariantes sur les domaines d'un espace localement convexe. Annali Scuola Normale Superiore Pisa, (4), 12: 515-529. | MR 848840 | Zbl 0603.46052
- - , 1985.[3] | MR 563329 | Zbl 0447.46040
- , 1980. Holomorphic maps and invariant distance. North Holland, Amsterdam.[4] Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. In «Advances in Holomorphy» (Editor ), North Holland, Amsterdam: 345-406. | MR 520667
, 1979.[5] | MR 277770 | Zbl 0207.37902
, 1970. Hyperbolic manifolds and holomorphic mappings. Dekker, New York.[6] Intrinsic distances, measures and geometric function theory. Bull, of the Amer. Math. Soc., 82: 357-416. | MR 414940 | Zbl 0346.32031
, 1976.[7] La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France, 109: 427-474. | MR 660145 | Zbl 0492.32025
, 1981.[8] Holomorphic retracts and intrinsic metrics in convex domains. Analysis Mathematica, 8: 257-261. | MR 690838 | Zbl 0509.32015
, 1982.[9] On holomorphic maps between domains in . Ann. Scuola Normale Superiore, (4), 12: 267-279 | MR 876125 | Zbl 0611.32022
, 1986.[10] 26, Munster. | MR 158093 | Zbl 0115.16303
, 1963. Die differentialgeometrischen eigenschaften der invarianten distanzfunktion von Carathéodory. Schr. Math. Inst. Univ. Munster,[11] | MR 123969 | Zbl 0096.16302
, 1961. Die innere geometrie der metrischen raume. Springer-Verlag, Berlin.[12] Remarks on the Kobayashi metrics. In «Several Complex variables II», Lect. Notes in Math. 185, Springer-Verlag, Berlin: 125-137. | MR 304694
, 1971.[13] Carathéodory and Kobayashi metric on Convex Domains. Preprint.
- ,[14] Complex geodesies. Compositio Math., 44: 375-394. | MR 662466
, 1982.[15] Sur les applications holomorphes isométriques pour la distance de Carathéodory. Annali Scuola Normale Superiore, (4), 9: 255-261. | MR 674974 | Zbl 0507.32017
, 1982.[16] Caractérisation des automorphismes analytiques d'un domain convexe borné. C. R. Acad. Sc. Paris, 299: 101-104. | MR 756530 | Zbl 0589.32042
, 1984.[17] Sur la caractérisation des automorphismes analitiques d'un domain borné. To appear. | MR 911450
,