Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators
Bartolomeo, Jerry ; Lasiecka, Irena ; Triggiani, Roberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989), p. 121-128 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the uniform stabilization problem for the Euler-Bernoulli equation defined on a smooth bounded domain of any dimension with feedback dissipative operators in various boundary conditions.

Studiamo, al variare delle condizioni al contorno, il problema di stabilizzazione uniforme per l'equazione di Euler-Bernoulli con dissipazione definita su un dominio regolare limitato di dimensione qualunque.

Publié le : 1989-12-01
@article{RLINA_1989_8_83_1_121_0,
     author = {Jerry Bartolomeo and Irena Lasiecka and Roberto Triggiani},
     title = {Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {83},
     year = {1989},
     pages = {121-128},
     zbl = {0749.93047},
     mrnumber = {1142449},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_121_0}
}
Bartolomeo, Jerry; Lasiecka, Irena; Triggiani, Roberto. Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 121-128. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_121_0/

[1] Bartolomeo, J. - Triggiani, R., 1988. Uniform stabilization of the Euler-Bernoulli equation with Dirichlet and Neumann boundary feedback. SIAM J. Mathematical Analysis, to appear. | MR 2637574 | Zbl 0753.35037

[2] Chen, G., 1979. Energy decay estimates and exact controllability of the wave equation in a bounded domain. J. Math. Pures et Appl., (9), 58: 249-274. | MR 544253

[3] Chen, G., 1981. A note on the boundary stabilization of the wave equation. SIAM J. Control, 19: 106-113. | MR 603083 | Zbl 0461.93036

[4] Flandoli, F. - Lasiecka, I. - Triggiani, R., Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli equations. Annali di Matematica Pura e Applicata, to appear. | Zbl 0674.49004

[5] Kim, J.V. - Ranardy, Y., 1987. Boundary control of the Timoshenkso beam. SIAM J. Control, 25: 1147- 1429. | MR 912448

[6] Lagnese, J., 1988. Paper presented at International Workshop held in Vorau. Austria, July 10-16.

[7] Lagnese, J., 1989. Boundary stabilization of thin elastic plates, SIAM Studies in Applied Mathem. | MR 1061153

[8] Lagnese, J., 1987. Uniform boundary stabilization of homogeneous, isotropic plates. Lectures Notes in Control Science, 102, Springer-Verlag: 204-215; Proceedings of the 1986 Vorau Conference on Distributed Parameter Systems.

[9] Lagnese, J., A note on boundary stabilization of wave equations. SIAM J. Control, to appear. | MR 957663 | Zbl 0657.93052

[10] Lagnese, J., 1983. Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Diff. Eqts., 50, (2): 163-182. | MR 719445 | Zbl 0536.35043

[11] Lions, J.L., 1988. Exact controllability, stabilization and perturbations. SIAM Review, March 1988, to appear in extended version by Masson.

[12] Lions, J.L., 1986. Un résultat de régularité (paper dedicated to S. Mizohata), Current Topics on Partial Differential Equations, Kinokuniya Company, Tokyo.

[13] Lagnese, J. - Lions, J.L., 1988. Modelling, analysis and control of thin plates. Masson. | MR 953313 | Zbl 0662.73039

[14] Lasiecka, I. - Triggiani, R., 1987. Exact controllability of the Euler-Bernoulli equation with L2(Σ)-control only in the Dirichlet boundary conditions. Atti della Accademia Nazionale dei Lincei, Rendiconti Classe di Scienze fisiche, matematiche e naturali, vol. 81, Roma. | Zbl 0666.49011

[15] Lasiecka, I. - Triggiani, R., 1989. Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a non-conservative case. SIAM J. Control & Optimization, 27: 330-373. | Zbl 0666.49013

[16] Lasiecka, I. - Triggiani, R., 1987. A direct approach to exact controllability for the wave equation with Neumann boundary control and to an Euler-Bernoulli equation. Proceedings 26th IEEE Conference, 529-534, Los Angeles.

[17] Lasiecka, I. - Triggiani, R., 1987. Uniform exponential energy decay of the wave equation in a bounded region with L2(0,;L2(Γ)-feedback control in the Dirichlet boundary conditions. J. Diff. Eqs., 66: 340-390. | Zbl 0629.93047

[18] Lasiecka, I. - Triggiani, R., 1988. Regularity theory for a class of non-homogeneous Euler Bernoulli equations: a cosine operator approach. Bollettino Unione Matematica Italiana, (7), 3-B (1989): 199-228. | MR 997339 | Zbl 0685.35029

[19] Lasiecka, I. - Triggiani, R., 1990. Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moments. J. Mathem. Analysis & Applic., 146: 1-33. | MR 1041199 | Zbl 0694.49026

[20] Lasiecka, I. - Triggiani, R., 1989. Uniform exponential energy decay of the Euler-Bernoulli equation on a bounded region with boundary feedback acting on the bending moment. Dept. of Applied Mathem. Report, University of Virginia.

[21] Triggiani, R., 1987. Wave equation on a bounded domain with boundary dissipation: an operator approach. J. Mathem. Anal. & Applic., 37 (1989), 438-461; Operator Methods for Optimal Control Problems, Lectures Notes in Pure and Applied Mathematics, 108: 283-310 (Lee Ed.), Marcel Dekker; also in Recent Advances in Communication and Control Theory, honoring the sixtieth anniversary of A.V. Balakrishnan (R.E. Kalman and G.I. Marchuk, Eds.), 262-286, Optimization Software (New York, 1987).

[22] Lasiecka, I. - Triggiani, R., 1989. Further results on exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions, to appear. | MR 984832 | Zbl 0666.49013