We study the uniform stabilization problem for the Euler-Bernoulli equation defined on a smooth bounded domain of any dimension with feedback dissipative operators in various boundary conditions.
Studiamo, al variare delle condizioni al contorno, il problema di stabilizzazione uniforme per l'equazione di Euler-Bernoulli con dissipazione definita su un dominio regolare limitato di dimensione qualunque.
@article{RLINA_1989_8_83_1_121_0, author = {Jerry Bartolomeo and Irena Lasiecka and Roberto Triggiani}, title = {Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {83}, year = {1989}, pages = {121-128}, zbl = {0749.93047}, mrnumber = {1142449}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_121_0} }
Bartolomeo, Jerry; Lasiecka, Irena; Triggiani, Roberto. Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 121-128. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_121_0/
[1] Uniform stabilization of the Euler-Bernoulli equation with Dirichlet and Neumann boundary feedback. SIAM J. Mathematical Analysis, to appear. | MR 2637574 | Zbl 0753.35037
- , 1988.[2] Energy decay estimates and exact controllability of the wave equation in a bounded domain. J. Math. Pures et Appl., (9), 58: 249-274. | MR 544253
, 1979.[3] A note on the boundary stabilization of the wave equation. SIAM J. Control, 19: 106-113. | MR 603083 | Zbl 0461.93036
, 1981.[4] Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli equations. Annali di Matematica Pura e Applicata, to appear. | Zbl 0674.49004
- - ,[5] Boundary control of the Timoshenkso beam. SIAM J. Control, 25: 1147- 1429. | MR 912448
- , 1987.[6] Paper presented at International Workshop held in Vorau. Austria, July 10-16.
, 1988.[7] Boundary stabilization of thin elastic plates, SIAM Studies in Applied Mathem. | MR 1061153
, 1989.[8] Uniform boundary stabilization of homogeneous, isotropic plates. Lectures Notes in Control Science, 102, Springer-Verlag: 204-215; Proceedings of the 1986 Vorau Conference on Distributed Parameter Systems.
, 1987.[9] A note on boundary stabilization of wave equations. SIAM J. Control, to appear. | MR 957663 | Zbl 0657.93052
,[10] Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Diff. Eqts., 50, (2): 163-182. | MR 719445 | Zbl 0536.35043
, 1983.[11] Exact controllability, stabilization and perturbations. SIAM Review, March 1988, to appear in extended version by Masson.
, 1988.[12] Un résultat de régularité (paper dedicated to S. Mizohata), Current Topics on Partial Differential Equations, Kinokuniya Company, Tokyo.
, 1986.[13] | MR 953313 | Zbl 0662.73039
- , 1988. Modelling, analysis and control of thin plates. Masson.[14] Exact controllability of the Euler-Bernoulli equation with -control only in the Dirichlet boundary conditions. Atti della Accademia Nazionale dei Lincei, Rendiconti Classe di Scienze fisiche, matematiche e naturali, vol. 81, Roma. | Zbl 0666.49011
- , 1987.[15] Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a non-conservative case. SIAM J. Control & Optimization, 27: 330-373. | Zbl 0666.49013
- , 1989.[16] A direct approach to exact controllability for the wave equation with Neumann boundary control and to an Euler-Bernoulli equation. Proceedings 26th IEEE Conference, 529-534, Los Angeles.
- , 1987.[17] Uniform exponential energy decay of the wave equation in a bounded region with -feedback control in the Dirichlet boundary conditions. J. Diff. Eqs., 66: 340-390. | Zbl 0629.93047
- , 1987.[18] Regularity theory for a class of non-homogeneous Euler Bernoulli equations: a cosine operator approach. Bollettino Unione Matematica Italiana, (7), 3-B (1989): 199-228. | MR 997339 | Zbl 0685.35029
- , 1988.[19] Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moments. J. Mathem. Analysis & Applic., 146: 1-33. | MR 1041199 | Zbl 0694.49026
- , 1990.[20] Uniform exponential energy decay of the Euler-Bernoulli equation on a bounded region with boundary feedback acting on the bending moment. Dept. of Applied Mathem. Report, University of Virginia.
- , 1989.[21] Wave equation on a bounded domain with boundary dissipation: an operator approach. J. Mathem. Anal. & Applic., 37 (1989), 438-461; Operator Methods for Optimal Control Problems, Lectures Notes in Pure and Applied Mathematics, 108: 283-310 ( Ed.), Marcel Dekker; also in Recent Advances in Communication and Control Theory, honoring the sixtieth anniversary of A.V. Balakrishnan ( and , Eds.), 262-286, Optimization Software (New York, 1987).
, 1987.[22] Further results on exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions, to appear. | MR 984832 | Zbl 0666.49013
- , 1989.