Sharp regularity theory for second order hyperbolic equations of Neumann type
Lasiecka, Irena ; Triggiani, Roberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989), p. 109-113 / Harvested from Biblioteca Digitale Italiana di Matematica

This note provides sharp regularity results for general, time-independent, second order, hyperbolic equations with non-homogeneous data of Neumann type.

Si danno risultati di regolarità delle soluzioni del problema misto per equazioni a derivate parziali del secondo ordine di tipo iperbolico, con dato non omogeneo sulla frontiera di tipo Neumann.

Publié le : 1989-12-01
@article{RLINA_1989_8_83_1_109_0,
     author = {Irena Lasiecka and Roberto Triggiani},
     title = {Sharp regularity theory for second order hyperbolic equations of Neumann type},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {83},
     year = {1989},
     pages = {109-113},
     zbl = {0767.35043},
     mrnumber = {1142447},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1989_8_83_1_109_0}
}
Lasiecka, Irena; Triggiani, Roberto. Sharp regularity theory for second order hyperbolic equations of Neumann type. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 83 (1989) pp. 109-113. http://gdmltest.u-ga.fr/item/RLINA_1989_8_83_1_109_0/

[1] Lions, J.L., private communication, May 1984.

[2] Lions, J.L. and Magenes, E., 1972. Nonhomogeneous boundary value problems and applications. Vols. I, II, Springer-Verlag, Berlin-Heidelberg-New York. | Zbl 0227.35001

[3] Lasiecka, I. and Triggiani, R., 1981. A cosine operator approach to modelling L2,T;L2(Γ)-boundary input hyperbolic equations. Applied Mathem. & Optimiz., 7: 35-93. | MR 600559 | Zbl 0473.35022

[4] Lasiecka, I. and Triggiani, R., 1983. Regularity of hyperbolic equations under L2,T;L2(Γ)-boundary terms. Applied Mathem. & Optimiz., 10: 275-286. | MR 722491 | Zbl 0526.35049

[5] Lasiecka, I. and Triggiani, R., 1989. Trace regularity of the solutions of the wave equations with homogeneous Neumann boundary conditions. J.M.A.A., 141: 49-71. | MR 1004583 | Zbl 0686.35029

[6] Lasiecka, I., Lions, J.L. and Triggiani, R., 1986. Nonhomogeneous boundary value problems for second order hyperbolic operators. J. de Mathématiques Pures et Appliquées, 65: 149-192. | MR 867669 | Zbl 0631.35051

[7] Miyatake, S., 1973. Mixed problems for hyperbolic equations of second order. J. Math. Kyoto University, 13: 435-487. | MR 333467 | Zbl 0281.35052

[8] Sakamoto, R., 1970. Mixed problems for hyperbolic equations. I, II. J. Math. Kyoto University, 10-2: 343-373 and 10-3: 403-417. | MR 283400 | Zbl 0203.10001

[9] Symes, W.W., 1983. A trace theorem for solutions of the wave equation and the remote determination of acoustic sources. Mathematical Methods in the Applied Sciences, 5: 131-152. | MR 703950 | Zbl 0528.35085

[10] Triggiani, R., 1978. A cosine operator approach to modeling L2,T;L2(Γ)-boundary input problems for hyperbolic systems. In «Proceedings 8th IFIP Conference on Optimization Techniques, University of Würzburg, West Germany 1977», Springer-Verlag, Lecture Notes CIS M6: 380-390.

[11] Lasiecka, I. and Triggiani, R., 1988. A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations. Proceedings Americ. Mathem. Soc., 104: 745-755. | MR 964851 | Zbl 0699.47034

[12] Lasiecka, I. and Triggiani, R., Sharp regularity theory for second order hyperbolic equations of Neumann type. Part I: L2 non-homodeneous data. Annali di Matematica Pura e Applicata, to appear. | Zbl 0742.35015

[13] Lasiecka, I. and Triggiani, R., 1989. Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. Part II: General boundary data. J. Differ. Eqts., to appear. | MR 1133544 | Zbl 0776.35030