For the finite-step, backward-difference analysis of elastic-plastic solids in small strains, a kinematic (potential energy) and a static (complementary energy) extremum property of the step solution are given under the following hypotheses: each yield function is the sum of an equivalent stress and a yield limit; the former is a positively homogeneous function of order one of stresses, the latter a nonlinear function of nondecreasing internal variables; suitable conditions of "material stability" are assumed. This communication anticipates results to be presented elsewhere in an extended version. Therefore, proofs of the statements and various comments are omitted.
Per l'analisi evolutiva a passi-finiti di sistemi elastoplastici in regime di piccole deformazioni, una proprietà estremale cinematica ed una statica vengono dimostrate in base ai seguenti assunti sulle leggi costitutive: le funzioni di snervamento sono somme di funzioni omogenee del primo ordine nelle tensioni e di limiti di snervamento; questi sono funzioni nonlineari di variabili interne non decrescenti e danno luogo a funzioni energia soggette ad opportune condizioni di convessità. Questa comunicazione presenta risultati da pubblicare in altra sede in forma estesa: qui si omettono le dimostrazioni dei risultati e vari commenti.
@article{RLINA_1988_8_82_4_711_0, author = {Giulio Maier and Giorgio Novati}, title = {Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {82}, year = {1988}, pages = {711-715}, zbl = {0737.73049}, mrnumber = {1139818}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1988_8_82_4_711_0} }
Maier, Giulio; Novati, Giorgio. Extremum theorems for finite-step back-ward-difference analysis of elastic-plastic nonlinearly hardening solids. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988) pp. 711-715. http://gdmltest.u-ga.fr/item/RLINA_1988_8_82_4_711_0/
[1] Applications of Mathematical Programming Concepts to Incremental Elastic-Plastic Analysis, Engineering Structures, 9, 171- 180.
, , and (1987) -[2] Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations, Int. J. Num. Meth. Engng., 21, 1561-1576. | MR 810515 | Zbl 0585.73057
, (1985) -[3] A Return Mapping Algorithm for Plane Stress Elastoplasticity, Int J. Num. Meth. Engng., 22, 649-670. | MR 839299 | Zbl 0585.73059
and (1986) -[4] Variational Principles and Convergence of Finite Element Approximations of Holonomic Elastic-Plastic Problems, UCT/CSIR Applied Mechanics Research Unit, Technical Report, N. 83. | Zbl 0618.73034
and (1986) -[5] Inelastic Analysis of Reinforced Concrete Frames by Quadratic Programming, In: Inelasticity and Non-Linearity in Structural Concrete, University of Waterloo Press, Study N. 8, paper 10, 265-288.
, and (1972) -[6] Finite Element Elastoplastic Analysis by Quadratic Programming: the Multistage Method, Proc. 2nd Int. Conf. on Structural Mechanics in Reactor Technology (SMIRT), Berlin, Vol. V, Part M.
and (1973) -[7] A Numerical Scheme for Integrating the Rate Plasticity Equations with an "A Priori" Error Control, Comput. Meth. Appl. Mech. Engng., 60 (3), 317-342. | MR 878836 | Zbl 0611.73038
and (1987) -[8] Mathematical Programming Methods in Engineering Plastic Analysis, Appl. Mech. Rev., 35 (12), 1631-1643.
and (1982) -[9] Quadratic Programming and Theory of Elastic-Perfectly Plastic Structures, Meccanica, 3 (4), 265-273. | MR 266487 | Zbl 0181.53704
(1968) -[10] Teoremi di Minimo in Termini Finiti per Continui Elastoplastici con Leggi Costitutive Linearizzate a Tratti, Rendiconti dell'Istituto Lombardo di Scienze e Lettere, Vol. 103, 1066-1080. | MR 263297 | Zbl 0213.28002
(1969) -[11] Complementary Plastic Work Theorems in Piecewise Linear Elastoplasticity, Int. J. Solids Struct., 5, 261-270. | Zbl 0164.27101
(1969) -[12] Formulation of Drucker-Prager Cap Model, ASCE-J. of Eng. Mech., 111 (7), 855-881.
and (1985) -[13] Principi di Minimo per la Soluzione Incrementale dei Problemi Elastoplastici, Rend. Acc. Naz. Lincei, Cl. Sci. | Zbl 0187.48003
(1969) -[14] Incremental Elastoplastic Analysis and Quadratic Optimization, Meccanica, 4 (1), 107-116. | Zbl 0198.58301
and (1970) -[15] Minimum Principles and Initial Stress Method in Elastic-Plastic Analysis, Engng. Struct. 6 (1), 65-69.
and (1984) -[16] Some Extremal Properties and Energy Theorems for Inelastic Materials and their Relationship to the Deformation Theory of Plasticity, J. Mech. Phys. Solids, 20, 281-300. | MR 349113 | Zbl 0241.73003
and (1979) -[17] On Dual Energy Theorems for a Class of Elastic-Plastic Problems Due to G. Maier, J. Mech. Phys. Solids, 20, 301-306. | MR 349114 | Zbl 0241.73008
and (1972) -