Rheologies quasi wave number independent in a sphere and splitting the spectral line
Caputo, Michele
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988), p. 507-526 / Harvested from Biblioteca Digitale Italiana di Matematica

The solution of the equations which govern the slow motions (for which the inertia forces are negligible) in an elastic sphere is studied for a great variety of rheological models and surface tractions with rotational symmetry (Caputo 1984a). The solution is expressed in terms of spherical harmonics and it is shown that its time dependent component is dependent on the order of the harmonic. The dependence of the time component of the solution on the order of the harmonic number is studied. The problem of causality is then discussed showing that the rheological models defined by strees-strain relations of the generalized Maxwell type (Caputo 1984b), which contain derivatives of real order, are causal. It is also seen that the rheological model based on stress strain relations of the generalized Maxwell type multiplies the number of spectral lines of the free modes of a spherical shell. The same applies also to the rheologies of Voigt, Maxwell and of the standard linear solid.

Si studiano le deformazioni quasistatiche di una sfera anelastica per una vasta classe di reologie. Si trova che esse sono reologie quasi indipendenti dal numero d'onda. Si discute il problema della causalità definendo una classe di reologie causali. Si trova infine che le classi di reologie più studiate causano moltiplicazioni delle righe spettrali di uno strato sferico.

Publié le : 1988-09-01
@article{RLINA_1988_8_82_3_507_0,
     author = {Michele Caputo},
     title = {Rheologies quasi wave number independent in a sphere and splitting the spectral line},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {82},
     year = {1988},
     pages = {507-526},
     zbl = {0715.73029},
     mrnumber = {1151705},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1988_8_82_3_507_0}
}
Caputo, Michele. Rheologies quasi wave number independent in a sphere and splitting the spectral line. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988) pp. 507-526. http://gdmltest.u-ga.fr/item/RLINA_1988_8_82_3_507_0/

Caputo, M., Elastodinamica ed elastoplastica di un modello della Terra e sue auto-oscillazioni toroidali, Boll. Geof. Teor. Appl., 3, 10, 1-20, 1961.

Caputo, M., Generalized rheologies and geophysical consequences, Tecnophysics, 116, 163-172, 1985.

Caputo, M., Linear and non-linear independent rheologies of rocks, Tectonophysics, 122, 53-71, 1986.

Caputo, M., Deformation, creep, fatigue and activation energy from constant strain rate experiments, Tectonophysics, 91, 157-164, 1983. | MR 728103

Caputo, M., Elasticità e dissipazione, ZanichelliBologna, 1969.

Caputo, M., Wave number independent rheology in a sphere, Atti Acc. Lincei Rend, fis., (8) LXXXI, 175-207, 1987. | MR 999430

Caputo, M., Spectral rheology in a sphere, Proc. Int., Symp. Space Techniques for Geodynamics, Somogi and Reigberg Eds. Sopron, Hungary, 1984a.

Caputo, M., Relaxation and free modes of a self gravitating planet, Geophys. J.R. astr. Soc., 77, 789-808, 1984b.

Caputo, M., Free modes of layered oblate planets, J. Geophys. Res, 68, 497-503, 1964,.

Bozzi Zadro, and Caputo, M., Spectral and byspectral analysis of the free modes of the Earth, Atti IV sympopsium on Theory and Computers, Supplemento al Nuovo Cimento, VI, 1, 67-81, 1968.

Marussi, A., I primi risultati ottenuti nella stazione per lo studio delle maree della verticale della Grotta Gigante, Bol. Geodesia e Scienze Affini, 19, 4, 1960.

Stacey, F.D., Physics of the Earth, J. Wiley & Sons, New York, Sidney, 1977.

Caputo, M. and Marcucci, S., The identification of the S12 mode of the spheroidal oscillations of the Earth, (Unpublished), 1982.