The semilinear differential equation (1), (2), (3), in with , (a nonlinear wave equation) is studied. In particular for , the existence is shown of a weak solution , periodic with period , non-constant with respect to , and radially symmetric in the spatial variables, that is of the form . The proof is based on a distributional interpretation for a linear equation corresponding to the given problem, on the Paley-Wiener criterion for the Laplace Transform, and on the alternative method of Cesari.
Si studiano equazioni differenziali semilineari (1), (2), (3), in con (equazioni delle onde nonlineari). In particolare, per , si dimostra l'esistenza di soluzioni deboli, periodiche di periodo , non costanti rispetto a , e radiali nelle variabili spaziali, cioè della forma . La dimostrazione è basata su una interpretazione distribuzionale di una equazione lineare corrispondente al problema dato, sul criterio di Paley-Wiener per la trasformazione di Laplace, e sul metodo alternativo di Cesari.
@article{RLINA_1988_8_82_3_431_0, author = {Michael W. Smiley}, title = {Breathers for nonlinear wave equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {82}, year = {1988}, pages = {431-435}, zbl = {0734.35052}, mrnumber = {1151695}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1988_8_82_3_431_0} }
Smiley, Michael W. Breathers for nonlinear wave equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988) pp. 431-435. http://gdmltest.u-ga.fr/item/RLINA_1988_8_82_3_431_0/
[1] Functional analysis, nonlinear differential equations, and the alternative method, in «Non-linear Functional Analysis and Differential Equations», ( , , , eds.), Marcel Dekker, New York, 1976, pp. 1-197. | MR 487630 | Zbl 0343.47038
,[2] Période minimale pour une corde vibrante de longueur infinite, C.R. Acad. Sci. Paris Ser. A.294 (1982), 127-129. | MR 651803 | Zbl 0942.35512
,[3] Minimal periods for solutions of semilinear wave equations in exterior domains and for solutions of the equations of nonlinear elasticity, J. of Math. Anal. and Appl. (to appear). | MR 960819 | Zbl 0676.35063
,[4] Fourier Transforms in the Complex Domain. «A.M.S. Colloquium Publications», Vol. 19, Providence, R.I., 1934. | Zbl 0011.01601
, ,[5] Eigenfunction methods and nonlinear hyperbolic boundary value problems at resonance, J. of Math. Anal. and Appl.122 no. 1 (1987), 129-151. | MR 874965 | Zbl 0624.35015
,[6] Time-periodic solutions of wave equations on and , Math. Meth. in Appl. Sci. (to appear) 3. | MR 909918 | Zbl 0669.35059
,[7] Breathers and forced oscillations of nonlinear wave equations on , (submitted to), J. für die reine und angewandte Mathematik. | Zbl 0666.35066
,