We consider a quadratic control problem with a semilinear state equation depending on a small parameter . We show that the optimal control is a regular function of such parameter.
Si considera un problema di controllo quadratico con una equazione di stato semilineare dipendente da un piccolo parametro , e si prova che il controllo ottimale è una funzione regolare di tale parametro.
@article{RLINA_1988_8_82_3_423_0, author = {Fausto Gozzi}, title = {Some results for an optimal control problem with a semilinear state equation}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {82}, year = {1988}, pages = {423-429}, zbl = {0716.49005}, mrnumber = {1151694}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1988_8_82_3_423_0} }
Gozzi, Fausto. Some results for an optimal control problem with a semilinear state equation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988) pp. 423-429. http://gdmltest.u-ga.fr/item/RLINA_1988_8_82_3_423_0/
[1] Hamilton-Jacobi equations and non linear control problems, to appear. | Zbl 0606.49020
-[2] | Zbl 0508.34001
and - Hamilton-Jacobi equations in Hilbert spaces. Pitman, London (1983).[3] Hamilton-Jacobi equations in Hilbert spaces; variational and semigroup approach, Annali di Mat. pura ed applicata, (IV), Vol. CXLII, (1985), pp. 303-349. | MR 839043 | Zbl 0508.34001
and -[4] Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277, (1983), pp. 1-42. | MR 690039 | Zbl 0599.35024
and -[5] 840, Springer-Verlag, (1981). | MR 610244 | Zbl 0456.35001
- Geometric theory of semilinear parabolic equations, Lecture notes in Math.[6] | Zbl 0203.09001
- Optimal control of systems governed by partial differential equations, Springer, Wiesbaden, 1972. - Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York-Heidelberg-Berlin, 1983.