In this paper we study the semigroups of holomorphic maps of a strictly convex domain into itself. In particular, we characterize the semigroups converging, uniformly on compact subsets, to a holomorphic map .
In questa nota vengono caratterizzati quei semigruppi di applicazioni olomorfe di un dominio strettamente convesso in sé che convergono, uniformemente sui compatti, ad un'applicazione olomorfa .
@article{RLINA_1988_8_82_2_223_0, author = {Marco Abate}, title = {Converging semigroups of holomorphic maps}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {82}, year = {1988}, pages = {223-227}, zbl = {0723.32012}, mrnumber = {1152644}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1988_8_82_2_223_0} }
Abate, Marco. Converging semigroups of holomorphic maps. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988) pp. 223-227. http://gdmltest.u-ga.fr/item/RLINA_1988_8_82_2_223_0/
[1] Horospheres and iterates of holomorphic maps. «Math. Zeit.» 198 (1987) 225-238. | MR 939538 | Zbl 0628.32035
:[2] Common fixed points of commuting holomorphic maps. «Math. Ann.» 283 (1989) 645-655. | MR 990593 | Zbl 0646.32014
:[2a] Coomon fixed points in hyperbolic Riemann surfaces and convex domains, Preprint, (1989). | MR 1065938 | Zbl 0724.32012
, :[3] Semigroups of analytic functions and composition operators. «Mich. Math. J.» 25 (1978) 101-115. | MR 480965 | Zbl 0382.47017
and :[4] Sur l'itération des fonctions analytiques. «C.R. Acad. Sci. Paris» 182 (1926), 255-257. | JFM 52.0309.04
:[5] | MR 635928 | Zbl 0471.32008
: Function theory of several complex variables. Wiley, New York, 1982.[6] | MR 342725 | Zbl 0223.32001
: Several complex variables. University of Chicago Press, Chicago, 1971.[7] Points fixes d'applications holomorphes dans un domaine borné convexe de . «Trans. Amer. Math. Soc.» 289 (1985), 345-353. | MR 779068 | Zbl 0589.32043
:[8] Sur l'itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette région. «C.R. Acad. Sci. Paris» 182 (1926), 42-43. | JFM 52.0309.02
:[9] Sur l'itération des fonctions bornées. «C.R. Acad. Sci. Paris» 182 (1926), 200-201. | JFM 52.0309.03
:[10] Sur une généralisation d'un théorème de Schwarz. «C.R. Acad. Sci. Paris» 182 (1926), 918-920. | JFM 52.0309.05
: