On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems
Bressan, Aldo
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988), p. 107-118 / Harvested from Biblioteca Digitale Italiana di Matematica

See Summary in Note I. First, on the basis of some results in [2] or [5]-such as Lemmas 8.1 and 10.1-the general (mathematical) theorems on controllizability proved in Note I are quickly applied to (mechanic) Lagrangian systems. Second, in case Σ, χ and M satisfy conditions (11.7) when 𝒬 is a polynomial in γ˙, conditions (C)-i.e. (11.8) and (11.7) with 𝒬0-are proved to be necessary for treating satisfactorily Σ's hyper-impulsive motions (in which positions can suffer first order discontinuities). This is done from a general point of view, by referring to a mathematical system ()z˙=F(t,γ,z,γ˙) where zm, γM, and F() is a polynomial in γ˙. The afore-mentioned treatment is considered satisfactory when, at a typical instant t, (i) the anterior values z- and γ- of z and γ, together with γ+ determine z+ in a certain physically natural way, based on certain sequences {γn()} and {zn()} of regular functions that approximate the 1st order discontinuities (γ-,γ+) and (z-,z+) of γ() and z() respectively, (ii) for z- and γ- fixed, z+ is a continuous function of γ+, and (iii) if γ+ tends to γ-, then z() tends to a continuous function and, for certain simple choices of {γn()} the functions zn() behave in a certain natural way. For M > 1, conditions (i) to (iii) hold only in very exceptional cases. Then their 1-dimensional versions (a) to (c) are considered, according to which (i) to (iii) hold, so to say, along a trajectory γ~(C3) of γ's discontinuity (γ-,γ+), chosen arbitrarily; this means that γ~ belongs to the trajectory of all regular functions γn()(n𝐍), i.e. γn(t)γ~[un(t)]. Furthermore a certain weak version of (a part of) conditions (a) to (c) is proved to imply the linearity of (). Conversely this linearity implies a strong version of conditions (a) to (c); and when this version holds, one can say that (𝒟) the (M-dimensional) parameter γ in () is fit to suffer (1-dimensional first order) discontinuities. As far as the triplet (Σ,χ,M), see Summary in Nota I, is concerned, for m=2N, χ=(q,γ), and z=(q,p) with ph=Tq˙h(h=1,,N), the differential system () can be identified with the dynamic equations of Σγ^ in semi-hamiltonian form. Then its linearity in γ˙ is necessary and sufficient for the co-ordinates χ of Σ to be M-fit for (1-dimensional) hyper-impulses, in the sense that (𝒟) holds.

Sulla base di risultati ottenuti in [2] o [5] - quali i Lemmi 8.1 e 10.1 - si mostra come applicare ai sistemi Lagrangiani i teoremi generali sulla controllabilità, considerati nella Nota I. Nel caso che Σ, χ ed M verifichino le condizioni (11.7) con 𝒬 polinomio nelle γ˙ si mostra che le condizioni (C) - ossia le (11.8) e le (11.7) con 𝒬0 - sono necessarie per poter trattare soddisfacentemente moti iper-impulsivi di Σ (in cui anche le posizioni posson subire discontinuità di 1a specie). Si fa quanto sopra da un punto di vista generale, riferendosi dapprima ad un sistema matematico ()z˙=F(t,γ,z,γ˙) polinomiale in γ˙ e con zm e γM. La suddetta trattazione si considera soddisfacente se, ad un generico istante t, (i) i valori anteriori z- e γ- di z e γ, e γ+, determinano z+ in un certo modo fisicamente naturale e basato su successioni {γn()} e {zn()} di funzioni regolari approssimanti le discontinuità (γ-,γ+) e (z-,z+) di γ() e z(), (ii) fissati z- e γ-, z+ risulta funzione continua di γ+ e (iii) quando γ+ tende a γ-, z() tende ad una funzione continua e le zn() si comportano in un certo modo naturale per certe semplici scelte delle γn(). Se M > 1, le (i)-(iii) son verificate solo in casi molto eccezionali. Allora si considerano le loro versioni (1-dimensionali) (a)-(c) in cui le (i)-(iii) valgono, per così dire, lungo una traiettoria γ~ (C3) di γ() con estremi γ- e γ+ e prefissata ad arbitrio, nel senso che γ~ è la traiettoria di tutte le γn(), ossia γn(t)=γ~[un(t)]. Inoltre si mostra che una certa versione debole (di una parte) delle condizioni (a)-(c) implica la linearità di () in γ˙. Viceversa questa linearità implica una certa versione forte delle (a)-(c), nel qual caso dico che (𝒟) il parametro (M-dimensionale) γ di () è adatto a subire discontinuità (1 -dimensionali, di 1a specie). Riguardo alla terna (Σ,χ,M), v. Sommario in Nota I , per m=2N, χ=(q,γ) e z=(q,p) con ph=Tq˙h(h=1,,N), il sistema differenziale () può identificarsi con le equazioni dinamiche di Σγ~ in forma hamiltoniana. Allora la loro linearità rispetto alle γ˙ risulta condizione necessaria e sufficiente affinché le co-ordinate χ di Σ siano M-adatte a (subire) iper-impulsi (1-dimensionali) nel senso che valga (𝒟).

Publié le : 1988-03-01
@article{RLINA_1988_8_82_1_107_0,
     author = {Aldo Bressan},
     title = {On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {82},
     year = {1988},
     pages = {107-118},
     zbl = {0669.70030},
     mrnumber = {0999842},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1988_8_82_1_107_0}
}
Bressan, Aldo. On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988) pp. 107-118. http://gdmltest.u-ga.fr/item/RLINA_1988_8_82_1_107_0/

[1] Ailon, A. and Langholz, G. (1985) - On the existence of time optimal control of mechanical manipulators. «Journal of optimization theory and applications», 46, 3-21. | MR 792589 | Zbl 0544.49001

[2] Bressan, Alberto (1987) - On differential systems with impulsive controls, «Sem. Mat. Univ. Padova», 78, 227. | MR 934514

[3] Bressan, Alberto and Rampazzo, F. - Differential systems with vector-valued impulsive controls, being printed on Bollettino dell'Unione Matematica Italiana. | Zbl 0653.49002

[4] Bressan, Aldo (1988) - On the application of control theory to certain problems for Lagrangian systems, and hyper-impulsive motions for these. I. On some general mathematical considerations on controllizzable parameters, «Atti Accad. dei Lincei», 82, 91-105. | MR 999841 | Zbl 0669.70029

[5] Bressan, Aldo - On some recent results in control theory for their application to Lagrangian system, being printed as a memoir on Atti Accad. dei Lincei.

[6] Bressan, Aldo - Hyper-impulsive motions and controllizable co-ordinates for Lagrangian systems, being printed as a memoir on «Atti Accad. Lincei».

[7] Bressan, Aldo - On some control problems concerning the ski or swing (in preparation). | Zbl 0744.49017

[8] Brockett, R.W. - Control theory and analytical mechanics. «Lie groups: History frontiers and application», Vol. VII. The 1976 NASA Conference on Control theory Edited by Martin Hermann (Math. Sci. Press.) | MR 484621 | Zbl 0368.93002

[9] Karihaloo, B.L. and Parbery, L.D. (1982) - Optimal control of a dynamic system representing a gantry crane, «Journal of optimization theory and applications», 36, 409-417. | MR 663346 | Zbl 0452.49010

[10] Sussmann, H.J. (1978) - On the gap between deterministic and stocastic ordinary differential equations, «Ann. of Probability», 6, 19-41. | MR 461664 | Zbl 0391.60056

[11] Van Der Schaft, A.J. (1982) - Hamiltonian dynamics with external forces and observation, «Math. Systems theory», 15, 145-168. | MR 656453 | Zbl 0538.58010

[12] Van Der Schaft, A.J. (1982) - Observability and controllability for smooth nonlinear systems, «SIAM J. Control and Optimization», 20, 338-354. | MR 652211 | Zbl 0482.93039

[13] Van Der Schaft, A.J. (1983) - Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces. «J. Math. Phys.», 24, 2085-2101. | MR 713542 | Zbl 0535.70022