See Summary in Note I. First, on the basis of some results in [2] or [5]-such as Lemmas 8.1 and 10.1-the general (mathematical) theorems on controllizability proved in Note I are quickly applied to (mechanic) Lagrangian systems. Second, in case , and satisfy conditions (11.7) when is a polynomial in , conditions (C)-i.e. (11.8) and (11.7) with -are proved to be necessary for treating satisfactorily 's hyper-impulsive motions (in which positions can suffer first order discontinuities). This is done from a general point of view, by referring to a mathematical system where , , and is a polynomial in . The afore-mentioned treatment is considered satisfactory when, at a typical instant , (i) the anterior values and of and , together with determine in a certain physically natural way, based on certain sequences and of regular functions that approximate the 1st order discontinuities and of and respectively, (ii) for and fixed, is a continuous function of , and (iii) if tends to , then tends to a continuous function and, for certain simple choices of the functions behave in a certain natural way. For M > 1, conditions (i) to (iii) hold only in very exceptional cases. Then their 1-dimensional versions (a) to (c) are considered, according to which (i) to (iii) hold, so to say, along a trajectory of 's discontinuity , chosen arbitrarily; this means that belongs to the trajectory of all regular functions , i.e. . Furthermore a certain weak version of (a part of) conditions (a) to (c) is proved to imply the linearity of . Conversely this linearity implies a strong version of conditions (a) to (c); and when this version holds, one can say that the (-dimensional) parameter in is fit to suffer (1-dimensional first order) discontinuities. As far as the triplet , see Summary in Nota I, is concerned, for , , and with , the differential system can be identified with the dynamic equations of in semi-hamiltonian form. Then its linearity in is necessary and sufficient for the co-ordinates of to be -fit for (1-dimensional) hyper-impulses, in the sense that holds.
Sulla base di risultati ottenuti in [2] o [5] - quali i Lemmi 8.1 e 10.1 - si mostra come applicare ai sistemi Lagrangiani i teoremi generali sulla controllabilità, considerati nella Nota I. Nel caso che , ed verifichino le condizioni (11.7) con polinomio nelle si mostra che le condizioni (C) - ossia le (11.8) e le (11.7) con - sono necessarie per poter trattare soddisfacentemente moti iper-impulsivi di (in cui anche le posizioni posson subire discontinuità di specie). Si fa quanto sopra da un punto di vista generale, riferendosi dapprima ad un sistema matematico polinomiale in e con e . La suddetta trattazione si considera soddisfacente se, ad un generico istante , (i) i valori anteriori e di e , e , determinano in un certo modo fisicamente naturale e basato su successioni e di funzioni regolari approssimanti le discontinuità e di e , (ii) fissati e , risulta funzione continua di e (iii) quando tende a , tende ad una funzione continua e le si comportano in un certo modo naturale per certe semplici scelte delle . Se M > 1, le (i)-(iii) son verificate solo in casi molto eccezionali. Allora si considerano le loro versioni (1-dimensionali) (a)-(c) in cui le (i)-(iii) valgono, per così dire, lungo una traiettoria () di con estremi e e prefissata ad arbitrio, nel senso che è la traiettoria di tutte le , ossia . Inoltre si mostra che una certa versione debole (di una parte) delle condizioni (a)-(c) implica la linearità di in . Viceversa questa linearità implica una certa versione forte delle (a)-(c), nel qual caso dico che il parametro (-dimensionale) di è adatto a subire discontinuità (1 -dimensionali, di specie). Riguardo alla terna , v. Sommario in Nota I , per , e con , il sistema differenziale può identificarsi con le equazioni dinamiche di in forma hamiltoniana. Allora la loro linearità rispetto alle risulta condizione necessaria e sufficiente affinché le co-ordinate di siano -adatte a (subire) iper-impulsi (1-dimensionali) nel senso che valga .
@article{RLINA_1988_8_82_1_107_0, author = {Aldo Bressan}, title = {On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {82}, year = {1988}, pages = {107-118}, zbl = {0669.70030}, mrnumber = {0999842}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1988_8_82_1_107_0} }
Bressan, Aldo. On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 82 (1988) pp. 107-118. http://gdmltest.u-ga.fr/item/RLINA_1988_8_82_1_107_0/
[1] On the existence of time optimal control of mechanical manipulators. «Journal of optimization theory and applications», 46, 3-21. | MR 792589 | Zbl 0544.49001
and (1985) -[2] On differential systems with impulsive controls, «Sem. Mat. Univ. Padova», 78, 227. | MR 934514
(1987) -[3] Differential systems with vector-valued impulsive controls, being printed on Bollettino dell'Unione Matematica Italiana. | Zbl 0653.49002
and -[4] On the application of control theory to certain problems for Lagrangian systems, and hyper-impulsive motions for these. I. On some general mathematical considerations on controllizzable parameters, «Atti Accad. dei Lincei», 82, 91-105. | MR 999841 | Zbl 0669.70029
(1988) -[5] On some recent results in control theory for their application to Lagrangian system, being printed as a memoir on Atti Accad. dei Lincei.
-[6] Hyper-impulsive motions and controllizable co-ordinates for Lagrangian systems, being printed as a memoir on «Atti Accad. Lincei».
-[7] On some control problems concerning the ski or swing (in preparation). | Zbl 0744.49017
-[8] Control theory and analytical mechanics. «Lie groups: History frontiers and application», Vol. VII. The 1976 NASA Conference on Control theory Edited by (Math. Sci. Press.) | MR 484621 | Zbl 0368.93002
-[9] Optimal control of a dynamic system representing a gantry crane, «Journal of optimization theory and applications», 36, 409-417. | MR 663346 | Zbl 0452.49010
and (1982) -[10] On the gap between deterministic and stocastic ordinary differential equations, «Ann. of Probability», 6, 19-41. | MR 461664 | Zbl 0391.60056
(1978) -[11] Hamiltonian dynamics with external forces and observation, «Math. Systems theory», 15, 145-168. | MR 656453 | Zbl 0538.58010
(1982) -[12] Observability and controllability for smooth nonlinear systems, «SIAM J. Control and Optimization», 20, 338-354. | MR 652211 | Zbl 0482.93039
(1982) -[13] Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces. «J. Math. Phys.», 24, 2085-2101. | MR 713542 | Zbl 0535.70022
(1983) -