Connected branches of asymptotically equivalent solutions to non-linear eigenvalue problems
Edelson, Allan L. ; Pera, Maria Patrizia
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 81 (1987), p. 337-346 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove an existence theorem for connected branches of solutions to nonlinear operator equations in Banach spaces. This abstract result is applied to the asymptotically equivalent solutions to nonlinear ordinary differential equations.

Si studia resistenza di connessi globali di soluzioni per problemi agli autovalori non lineari in spazi di Banach e si prova, per una classe di equazioni differenziali ordinarie, l'esistenza di rami di soluzioni asintoticamente equivalenti a polinomi.

Publié le : 1987-12-01
@article{RLINA_1987_8_81_4_337_0,
     author = {Allan L. Edelson and Maria Patrizia Pera},
     title = {Connected branches of asymptotically equivalent solutions to non-linear eigenvalue problems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {81},
     year = {1987},
     pages = {337-346},
     zbl = {0691.34051},
     mrnumber = {0999825},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1987_8_81_4_337_0}
}
Edelson, Allan L.; Pera, Maria Patrizia. Connected branches of asymptotically equivalent solutions to non-linear eigenvalue problems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 81 (1987) pp. 337-346. http://gdmltest.u-ga.fr/item/RLINA_1987_8_81_4_337_0/

[1] Amann, H. (1976) - Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, «SIAM Review», 18, 620-709. | MR 415432 | Zbl 0345.47044

[2] Brown, R.F. (1971) - The Lefschetz fixed point theorem, Scott, Foresman and Company, Glenview, Illinois. | MR 283793 | Zbl 0216.19601

[3] Dancer, E.N. (1973) - Global solutions branches for positive maps, «Arch. Rational Mech. Anal.», 52, 181-192. | MR 353077 | Zbl 0275.47043

[4] Edelson, A.L. and Schuur, J.D. (1983) - Asymptotic and strong asymptotic equivalence to polynomials for solutions of nonlinear differential equations, Proc. Equadiff 82, Wurzburg, «Lecture Notes in Math.», 1017, Springer Verlag, Berlin. | Zbl 0526.34022

[5] Furi, M. and Pera, M.P. - A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, to appear in «Annales Polonici Math.». | MR 927581 | Zbl 0656.47052

[6] Granas, A. (1972) - The Leray-Schauder index and the fixed point theory for arbitrary ANR's, «Bull. Soc. Math. France», 100, 209-228. | MR 309102 | Zbl 0236.55004

[7] Kitamura, Y. and Kusano, T. (1980) - Nonlinear oscillation of higher order functional differential equations with deviating arguments, «J. Mathematical Analysis and Appl.», 77, 100-119. | MR 591264 | Zbl 0465.34044

[8] Kuratowski, K. (1968) - Topology, vol. 2, Academic Press, New York.

[9] Rabinowitz, P.H. (1971) - Some global results for nonlinear eigenvalue problems, «J. Functional Anal.», 7, 487-513. | MR 301587 | Zbl 0212.16504

[10] Whyburn, G.T. (1958) - Topological Analysis, Princeton University Press. | MR 99642 | Zbl 0080.15903