Integral representation and relaxation for functionals defined on measures
De Giorgi, Ennio ; Ambrosio, Luigi ; Buttazzo, Giuseppe
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 81 (1987), p. 7-13 / Harvested from Biblioteca Digitale Italiana di Matematica

Given a separable metric locally compact space Ω, and a positive finite non-atomic measure λ on Ω, we study the integral representation on the space of measures with bounded variation Ω of the lower semicontinuous envelope of the functional F(u)=Ωf(x,u)𝑑λ  uL1(Ω,λ,n) with respect to the weak convergence of measures.

Dato uno spazio metrico localmente compatto a base numerabile Ω ed una misura λ su tale spazio, positiva, finita e non atomica, si studia la rappresentazione integrale del funzionale ottenuto rilassando F(u)=Ωf(x,u)𝑑λ  uL1(Ω,λ,n) nello spazio Mn(Ω) delle misure a variazione limitata su Ω, rispetto alla topologia della convergenza debole di misure.

Publié le : 1987-03-01
@article{RLINA_1987_8_81_1_7_0,
     author = {Ennio De Giorgi and Luigi Ambrosio and Giuseppe Buttazzo},
     title = {Integral representation and relaxation for functionals defined on measures},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {81},
     year = {1987},
     pages = {7-13},
     zbl = {0713.49018},
     mrnumber = {1000018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1987_8_81_1_7_0}
}
De Giorgi, Ennio; Ambrosio, Luigi; Buttazzo, Giuseppe. Integral representation and relaxation for functionals defined on measures. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 81 (1987) pp. 7-13. http://gdmltest.u-ga.fr/item/RLINA_1987_8_81_1_7_0/

[1] Acerbi, E. and Fusco, N. (1984) - Semicontinuity problems in the calculus of variations. «Arch. Rational Mech. Anal.», 86, 125-145. | MR 751305 | Zbl 0565.49010

[2] Bouchitte, G.: Paper in preparation.

[3] Buttazzo, G. and Dal Maso, G. (1983) - On Nemyckii operators and integral representation of local functionals. «Rend. Mat.», 3, 491-509. | MR 743394 | Zbl 0536.47027

[4] Buttazzo, G. and Dal Maso, G. (1985) - Integral representation and relaxation of local functionals. «Non linear Anal.», 9, 515-532. | MR 794824 | Zbl 0527.49008

[5] Fougeres, A. and Truffert, A. (1984) - Δ-integrands and essential infimum, Nemyckii representation of l.s.c. operators on decomposable spaces and Radon-Nikodym-Hiai representation of measure functionals. Preprint A.V.A.M.A.C. University of Perpignan, Perpignan.

[6] Gavioli, A. (1986) - Condizioni necessarie e sufficienti per la semicontinuità inferiore di certi funzionali integrali. Preprint University of Modena, Modena.

[7] Hiai, F. (1979) - Representation of additive functionals on vector valued normed Kothe spaces. «Kodai Math. J.», 2, 300-313. | MR 553237 | Zbl 0431.46025

[8] Marcellini, P. (1979) - Some problems of semicontinuity. «Proceedings Recent Methods in Non linear Analysis, Rome 1978», Edited by E. De Giorgi and E. Magenes and U. Mosco, Pitagora, Bologna, 205-222. | MR 533168 | Zbl 0405.49021

[9] Marcellini, P. and Sbordone, C. (1980) - Semicontinuity problems in the calculus of variations. «Non linear Anal.» , 4, 241-257. | MR 563807 | Zbl 0537.49002

[10] Olech, C. (1975) - Existence theory in optimal control problems: the underlying ideas. «Proceedings International Conference on Differential Equations, University of Southern California 1974», Edited by H.A. Antosiewicz, Academic Press, New York 612-629. | MR 420377 | Zbl 0353.49013

[11] Rockafellar, R.T. (1971) - Integrals which are convex functionals, II. «Pacific J. Math.», 39, 439-469. | MR 310612 | Zbl 0236.46031

[12] Rockafellar, R.T. (1972) - Convex Analyss. Princeton University Press, Princeton. | Zbl 0193.18401

[13] Rudin, W. (1974) - Real and Complex Analysis. Mc-Graw Hill, New York. | MR 344043 | Zbl 0142.01701

[14] Valadier, M. (1979) - Closedness in the weak topology of the dual pair L1, C. «J. Math. Anal. Appl.», 69, 17-34. | MR 535279 | Zbl 0412.46040