Per l'equazione differenziale ordinaria non lineare del 3° ordine indicata nel titolo, studiata da numerosi autori sotto l'ipotesi , si dimostra l'esistenza di almeno una soluzione limitata sopprimendo l'ipotesi suddetta.
@article{RLINA_1986_8_80_7-12_533_0, author = {J\'an Andres}, title = {Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \operatorname{sgn} x \ge 0$ for $|x| > R$.}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {80}, year = {1986}, pages = {533-539}, zbl = {0722.34027}, mrnumber = {0976947}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1986_8_80_7-12_533_0} }
Andres, Ján. Boundedness results of solutions to the equation $x^{\prime\prime\prime} + ax^{\prime\prime}+ g (x) x^{\prime}+ h (x) = p (t)$ without the hypothesis $h (x) \, \operatorname{sgn} x \ge 0$ for $|x| > R$.. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 80 (1986) pp. 533-539. http://gdmltest.u-ga.fr/item/RLINA_1986_8_80_7-12_533_0/
[1] | MR 241749 | Zbl 0172.10801
, and (1969) - Nichtlineare Dijferentialgleichungen höherer Ordnung. Cremonese, Roma.[2] Boundedness theorems for certain third order equations. «Atti Accad. Naz. Lincei», (8), 55, 194-201. | MR 364784 | Zbl 0295.34022
and (1973) -[3] On the boundedness of solutions of the equation . «Ann. Mat. Pura Appl.», 4, 80, 281-299. | MR 241753 | Zbl 0211.40102
(1968) -[4] Boundedness and stability for nonlinear third order differential equations. «Atti Accad. Naz. Lincei», (8), 56, 859-865. | MR 399597 | Zbl 0326.34062
(1974) -[5] Asymptotic behavior of the solutions of certain third order differential equations. «SIAM J. Appl. Math.», 19, 96-102. | MR 267212 | Zbl 0212.11403
(1970) -[6] Einige Bemerkungen über eine nichtlineare Differentialgleichungen dritten Ordnung. «Arch. Math.», 2, 19-26. | MR 199501 | Zbl 0244.34023
(1966) -[7] Über eine nichtlineare Differentialgleichung dritter Ordnung. «Czech. Math. J.», 20, 207-219. | MR 259237 | Zbl 0201.11602
(1970) -[8] Boundedness of solutions of the third order differential equation with the oscillatory restoring and forcing terms. «Czech. Math. J.», 1, 1-6. | MR 822859 | Zbl 0608.34039
(1986) -[9] On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order. «Čas. pěst. mat.», 3, 225-229. | MR 853786 | Zbl 0609.34058
(1986) -[10] Phasenraum-Methoden zum Studium nichtlinearerer Dijferentialgleichungen. «Jber. Deutch. Math.-Verein», 75 (3), 1, 130-139. | MR 477300 | Zbl 0287.34053
(1973/74) -[11]
(1966) - Translation operator along the trajectories of differential equations. «Nauka, Moscow» (in Russian).[12] Stability theory by Liapunov's second method. «Math. Soc. Japan», Tokyo. | MR 208086 | Zbl 0144.10802
(1966) -[13] Dichotomies for solutions of a certain third order nonlinear differential equation which is not from the class . To appear in «Fasc. Math.». | MR 942320 | Zbl 0645.34048
-[14] Integral manifolds of a class of third order autonomous differential equations. «J. Diff. Eqs.», 7, 274-286. | MR 254319 | Zbl 0215.15005
(1970) -