Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation
Kondratiev, Vladimir A. ; Oleinik, Olga A.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 80 (1986), p. 525-529 / Harvested from Biblioteca Digitale Italiana di Matematica

Per ogni soluzione della (1) nel dominio limitato Ω,, appartenente a H02(Ω) e soddisfacente le condizioni (2), si dimostra la maggiorazione (5), valida nell'intorno di ogni punto x0 del contorno; si consente a Ω di essere singolare in x0.

Publié le : 1986-12-01
@article{RLINA_1986_8_80_7-12_525_0,
     author = {Vladimir A. Kondratiev and Olga A. Oleinik},
     title = {Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {80},
     year = {1986},
     pages = {525-529},
     zbl = {0675.35028},
     mrnumber = {0976945},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1986_8_80_7-12_525_0}
}
Kondratiev, Vladimir A.; Oleinik, Olga A. Estimates near the boundary for second order derivatives of solutions of the Dirichlet problem for the biharmonic equation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 80 (1986) pp. 525-529. http://gdmltest.u-ga.fr/item/RLINA_1986_8_80_7-12_525_0/

[1] Kondratiev, V.A. and Oleinik, O.A. - Best possible estimates in Hölder spaces for weak solutions of the biharmonic equation, the Navier-Stokes system, and the Karman system in non-smooth two-dimensional domains. «Vestnik Mosc. Univ.», ser. 1, «Mat., Mech.», 6, 22-39, 1983.

[2] Kondratiev, V.A., Kopacek, J., Lekveishvili, D.M. and Oleinik, O.A. - Best possible estimates in Hölder spaces and the precise Saint-Venant principle for solutions of the biharmonic equation, «Trudy Mat. Institute im. Steklov», 166, 91-106, 1984. | MR 752171 | Zbl 0566.35045

[3] Kondratiev, V.A. and Oleinik, O.A. - On the smoothness of weak solutions of the Dirichlet problem for the biharmonic equation in domains with non-regular boundary. In: Nonlinear partial differential equations and their applications. College de France seminar, 7, 180-199, 1986. | MR 879462 | Zbl 0576.35040

[4] Oleinik, O.A. - On some mathematical problems of elasticity. Convegno Celebrativo del Centenario della nascita di Mauro Picone e di Leonida Tonelli, 6-9 maggio 1985. «Accad. Naz. dei Lincei», Roma, 259-273, 1986.

[5] Kopacek, J. and Oleinik, O.A. - On the behaviour of solutions of the elasticity system in a neighbourhood of irregular points of the boundary and at the infinity, «Transactions of the Moscow Math. Society», 43, 1981. | Zbl 0506.73020

[6] Agmon, S.J.Douglis, A. and Nirenberg, L. - Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. «I. Comm. Pure Appl. Math.», 12, 623-727, 1959. | MR 125307 | Zbl 0093.10401

[7] Sobolev, S.L. - Some applications of functional analysis to mathematical physics. Leningrad Univers., 1950. | MR 52039 | Zbl 0123.09003

[8] Morrey, C.B. - Multiple integrals in the calculus of variations. Springer Verlag, 130, 1966. | MR 202511 | Zbl 0142.38701

[9] Mazya, V.G. and Shaposhnikova, T.O. - On requirements for the boundary in Lp-theory of elliptic boundary value problems, «Dokl. A.N. USSR», 251 (5), 1055-1058, 1980. | MR 569375 | Zbl 0456.35024