The multilinear forms, obtained by polarizing the coefficients of the characteristic polynomial of a matrix, are considered. A general relation (formula A) between such forms is proved. It follows in particular a rational expression for the above-mentioned coefficients (formula C), which is in a sense analogous to Newton's formulas, but with the use of the determinant function instead of the trace function.
@article{RLINA_1986_8_80_1-2_1_0, author = {Renzo Mazzocco}, title = {Sulle forme polarizzanti i coefficienti del polinomio caratteristico di una matrice}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {80}, year = {1986}, pages = {1-5}, zbl = {0636.15020}, mrnumber = {0944364}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1986_8_80_1-2_1_0} }
Mazzocco, Renzo. Sulle forme polarizzanti i coefficienti del polinomio caratteristico di una matrice. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 80 (1986) pp. 1-5. http://gdmltest.u-ga.fr/item/RLINA_1986_8_80_1-2_1_0/
[1] Hermitian vector bundles and the equidistribution of the zeroes of their holomorfic sections, «Acta mathematica», 114, 71-112. | MR 185607 | Zbl 0148.31906
and (1965) -[2] | MR 349697 | Zbl 0086.01303
(1973) - Elementary matrix algebra, The Macmillan Company, New York.[3] II, Interscience Publishers, New York. | MR 238225 | Zbl 0119.37502
and (1969) - Foundations of differential geometry, vol.[4] | MR 576061 | Zbl 0461.16001
(1980) - Polinomial identities in ring theory, Academic Press, New York.[5] II, Academic Press Inc., London. | MR 701854 | Zbl 0495.15002
(1983) - Linear algebra and group representations, vol.