On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem
Pietra, Paola ; Verdi, Claudio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 78 (1985), p. 159-171 / Harvested from Biblioteca Digitale Italiana di Matematica

Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.

Publié le : 1985-12-01
@article{RLINA_1985_8_79_6_159_0,
     author = {Paola Pietra and Claudio Verdi},
     title = {On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {78},
     year = {1985},
     pages = {159-171},
     zbl = {0635.65128},
     mrnumber = {0944369},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1985_8_79_6_159_0}
}
Pietra, Paola; Verdi, Claudio. On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 78 (1985) pp. 159-171. http://gdmltest.u-ga.fr/item/RLINA_1985_8_79_6_159_0/

[1] Brezzi, F. and Caffarelli, L.A. (1983) - Convergence of the discrete free boundaries for finite element approximations, «R.A.I.R.O. Anal. Numér.», 17, 385-395. | MR 713766 | Zbl 0547.65081

[2] Caffarelli, L.A. (1981) — A remark on the Hausdorff measure of a free boundary and the convergence of coincidence sets, «Boll. U.M.I.», (5) 18-A, 109-113. | MR 607212 | Zbl 0453.35085

[3] Ciarlet, P.G. (1971) - Fonction de Green discrètes et principe du maximum discret, Thesis Univ. Paris VI.

[4] Ciarlet, P.G. (1978) - The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam. | MR 520174 | Zbl 0383.65058

[5] Ciarlet, P.G. and Raviart, P.A. (1973) - Maximum principle and uniform convergence for the finite element method, «Comput. Meth. Appl. Engrg.», 2, 17-31. | MR 375802 | Zbl 0251.65069

[6] Cortey Dumont, Ph. - On finite element approximation in the L-norm of parabolic obstacle variational inequalities and quasi-variational inequalities, preprint. | Zbl 0574.65064

[7] Federer, H. (1969) - Geometric Measure Theory, Springer, Berlin. | MR 257325 | Zbl 0176.00801

[8] Friedman, A. (1982) - Variational Principles and Free Boundary Problems, Wiley, New York. | MR 679313 | Zbl 0564.49002

[9] Glowinski, R., Lions, J.L. and Tremolieres, R. (1981) - Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam. | MR 635927 | Zbl 0463.65046

[10] R.H. NOCHETTO - A note on the approximation of free boundaries by finite element methods, to appear in M2AN (ex «R.A.I.R.O. Anal. Numér.»). | MR 852686 | Zbl 0596.65092

[11] Pietra, P. and Verdi, C. - Convergence of the approximate free boundary for the multidimensional one-phase Stefan problem, to appear in «Comp. Mech.». | Zbl 0622.65126

[12] Fetter, A. - L-error estimate for an approximation of a parabolic variational inequality, preprint. | MR 880335 | Zbl 0617.65064