Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.
@article{RLINA_1985_8_79_6_159_0, author = {Paola Pietra and Claudio Verdi}, title = {On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {78}, year = {1985}, pages = {159-171}, zbl = {0635.65128}, mrnumber = {0944369}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1985_8_79_6_159_0} }
Pietra, Paola; Verdi, Claudio. On the Convergence of the Approximate Free Boundary for the Parabolic Obstacle Problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 78 (1985) pp. 159-171. http://gdmltest.u-ga.fr/item/RLINA_1985_8_79_6_159_0/
[1] Convergence of the discrete free boundaries for finite element approximations, «R.A.I.R.O. Anal. Numér.», 17, 385-395. | MR 713766 | Zbl 0547.65081
and (1983) -[2] A remark on the Hausdorff measure of a free boundary and the convergence of coincidence sets, «Boll. U.M.I.», (5) 18-A, 109-113. | MR 607212 | Zbl 0453.35085
(1981) —[3] Fonction de Green discrètes et principe du maximum discret, Thesis Univ. Paris VI.
(1971) -[4] | MR 520174 | Zbl 0383.65058
(1978) - The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam.[5] Maximum principle and uniform convergence for the finite element method, «Comput. Meth. Appl. Engrg.», 2, 17-31. | MR 375802 | Zbl 0251.65069
and (1973) -[6] On finite element approximation in the -norm of parabolic obstacle variational inequalities and quasi-variational inequalities, preprint. | Zbl 0574.65064
-[7] | MR 257325 | Zbl 0176.00801
(1969) - Geometric Measure Theory, Springer, Berlin.[8] | MR 679313 | Zbl 0564.49002
(1982) - Variational Principles and Free Boundary Problems, Wiley, New York.[9] | MR 635927 | Zbl 0463.65046
, and (1981) - Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam.[10] R.H. NOCHETTO - A note on the approximation of free boundaries by finite element methods, to appear in (ex «R.A.I.R.O. Anal. Numér.»). | MR 852686 | Zbl 0596.65092
[11] Convergence of the approximate free boundary for the multidimensional one-phase Stefan problem, to appear in «Comp. Mech.». | Zbl 0622.65126
and -[12] -error estimate for an approximation of a parabolic variational inequality, preprint. | MR 880335 | Zbl 0617.65064
-