@article{RLINA_1984_8_76_6_353_0,
author = {Dean A. Carlson},
title = {The existence of optimal solutions for infinite horizon optimal control problems},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
volume = {76},
year = {1984},
pages = {353-358},
mrnumber = {0863496},
language = {en},
url = {http://dml.mathdoc.fr/item/RLINA_1984_8_76_6_353_0}
}
Carlson, Dean A. The existence of optimal solutions for infinite horizon optimal control problems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 76 (1984) pp. 353-358. http://gdmltest.u-ga.fr/item/RLINA_1984_8_76_6_353_0/
[1] (1983) - An Existence Result for Optimal Economic Growth, «J. Math. Anal. Appl.», 95, 195-213.
[2] (1978) - Lower Closure and Existence Theorems for Optimal Control Problems with Infinite Horizon, «J. Optim. Theory Appl.», 24, 639-649.
[3] (1976) - Existence Theorems for Lagrange Control Problems with Unbounded Time Domain, «J. Optim. Theory Appl.», 19, 89-116.
[4] and (1976) - On the Existence of Overtaking Optimal Trajectories Over an Infinite Time Horizon, «Math. Oper. Res.», 1, 337-346.
[5] (1983) — On the Existence of Optimal Solutions for Infinite Horizon Optimal Control Problems, Ph.D. Dissertation, Univ. of Delaware.
[6] (1983) - Optimization. Theory and Applications, «Appl. of Math.», 11, Springer-Verlag, New York.
[7] (1962) - The Existence of an Optimum Program, «Econometrica», 30, 178-187.
[8] (1940) - Una Nuova Estensione dei Moderni Methodi de Calcolo delle Variazioni, «Annali della Scuola Normale Superiore di Pisa», Sez. 2, 9, 258-261.
[9] (1980) - Existence and Global Asymptotic Stability of Optimal Trajectories for a class of Infinite Horizon Nonconvex Systems, «J. Optim. Theory Appl.», 31, 515-533.
[10] (1977) - Integral Functionals, Normal Integrands, and Measurable Selections, in «Nonlinear Operators and The Calculus of Variations» ( et al., Eds.), Lec. Notes in Math. No. 543, Springer-Verlag, New York.
[11] (1981) - A Note on The Existence of an Optimal Capital Accumulation in The Continuous Time Horizon, «J. Econ. Theory», 22, 421-429.