Una -tautologia è una tautologia del tipo avente un solo interpolante di Craig , a meno di equivalenza logica. Utilizzando misure di complessità relative al problema di trovare tale , mostriamo come si possano ottenere limiti non uniformi di complessità mediante limiti uniformi, e viceversa.
@article{RLINA_1983_8_75_3-4_99_0, author = {Daniele Mundici}, title = {$\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {74}, year = {1983}, pages = {99-101}, zbl = {0568.03019}, mrnumber = {0780809}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1983_8_75_3-4_99_0} }
Mundici, Daniele. $\Delta$-tautologies, uniform and non-uniform upper bounds in computation theory. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 74 (1983) pp. 99-101. http://gdmltest.u-ga.fr/item/RLINA_1983_8_75_3-4_99_0/
[1] | MR 532927
and (1977) - Model Theory. North-Holland, Amsterdam, second edition.[2] Applications of many-sorted interpolation theorems. In: Proceedings Tarski Symposium, «AMS Proc. Symp. Pure Math.», 25, 205-223. | MR 406772 | Zbl 0311.02060
(1974) —[3] | MR 483344 | Zbl 0376.68027
and (1979) - An Introduction to the General Theory of Algorithms. North-Holland, Amsterdam, third printing.[4] 834, 211-227. | MR 606788 | Zbl 0444.03019
(1980) - Computational complexity of decision problems in elementary number theory, Springer «Lecture Notes in Mathematics»,[5] Riemann's hypothesis and tests for primality, «Journal of Computer and System Sciences», 13, 300-317. | MR 480295 | Zbl 0349.68025
(1976) —[6] NP and Craig's interpolation theorem. In: Logic Colloquium 1982, North-Holland, Amsterdam, to appear. | MR 762116 | Zbl 0594.03021
(1984) -[7] Tautologies with a unique Craig interpolant, uniform vs. nonuniform complexity, submitted for publication. | MR 765593 | Zbl 0594.03022
(1984) -[8] A lower bound for the complexity of Craig's interpolants in sentential logic, «Archiv math. Logik», 23, 27-36. | MR 710362 | Zbl 0511.03004
(1983) -[9] Every prime has a succinct certificate, «SIAM J. Computing», 4, 214-220. | MR 391574 | Zbl 0316.68031
(1975) -[10] | MR 495205 | Zbl 0391.68025
(1976) - The Complexity of Computing. Wiley, New York.[11] Complexity problems in computational theory, «Russian Math. Surveys», 36, 23-125. | MR 643069 | Zbl 0501.68013
(1981) -