Let be an 5 dimensional closed subscheme of and the largest integer such that is finite dimensional for all and for all locally free sheaves on . If we introduce the same integer in the complex case, i.e. when runs through the set of all locally free analytic sheaves on , we show that if .
@article{RLINA_1982_8_73_5_116_0, author = {Massimo Lorenzani}, title = {Una propriet\`a di $P^{n} --- Y$}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {72}, year = {1982}, pages = {116-121}, zbl = {0545.14015}, mrnumber = {0726289}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1982_8_73_5_116_0} }
Lorenzani, Massimo. Una proprietà di $P^{n} — Y$. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 72 (1982) pp. 116-121. http://gdmltest.u-ga.fr/item/RLINA_1982_8_73_5_116_0/
[1] Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projectiven Raum. «Math. Arm.», 187, 150-162. | MR 268181 | Zbl 0184.31303
(1970) -[2] Prolongement de faisceaux analytiques cohérents, «Inv. Math.», 7, 321-343. | MR 252683 | Zbl 0179.12201
e (1969) -[3] 41, Springer-Verlag. | MR 224620
(1967) - Local Cohomology, «Lectures Notes Math.»,[4] 224, Springer-Verlag. | MR 354651
(1971) - Revêtements Etales et Groupe Fondamental, «Lecture Notes Math.»,[5] 156, Springer-Verlag. | MR 282977 | Zbl 0208.48901
(1970) - Ample Subvarieties of Algebraic Varieties, «Lecture Notes Math.»,[6] 57, Spinger-Verlag. | MR 463157 | Zbl 0367.14001
(1977) - Algebraic Geometry, «Graduate Text Math.»,[7] Local Cohomological dimension in characteristic p, «Ann. Math.», 105, 45—79. | MR 441962 | Zbl 0362.14002
e (1977) —[8] Quelques remarques sur la cohérence des faisceaux de cohomologie locale, «C. R. Acad. Sc. Paris», 283, 783-785. | MR 422258 | Zbl 0348.14006
e (1976) -[9] Local Cohomological dimension of algebraic varieties, «Ann. Math.», 98, 327-365. | MR 506248
(1973) -[10] 172, Springer-Verlag. | MR 287033
e (1971) - Gap-Sheaves and extension of Coherent Analytic Subsheaves, «Lecture Notes Math.»,