In questa Nota enunciamo, per una classe di equazioni ellittiche del secondo ordine «fortemente degeneri» a coefficienti misurabili, un teorema di hölderianità delle soluzioni deboli che estende il ben noto risultato di De Giorgi e Nash. Tale risuJtato discende dalle proprietà geometriche di opportune famiglie di sfere associate agli operatori.
@article{RLINA_1982_8_72_5_273_0, author = {Bruno Franchi and Ermanno Lanconelli}, title = {De Giorgi's Theorem, for a Class of Strongly Degenerate Elliptic Equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {72}, year = {1982}, pages = {273-277}, zbl = {0543.35041}, mrnumber = {0728257}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1982_8_72_5_273_0} }
Franchi, Bruno; Lanconelli, Ermanno. De Giorgi’s Theorem, for a Class of Strongly Degenerate Elliptic Equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 72 (1982) pp. 273-277. http://gdmltest.u-ga.fr/item/RLINA_1982_8_72_5_273_0/
[1] Spazi di Sobolev con peso ed alcune applicazioni, «Boll. Un. Mat. Ital.», 13-A, 1-52. | Zbl 0355.46016
(1976) -[2] | Zbl 0224.43006
and (1971) - Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer, Berlin-Heidelberg-New York.[3] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, «Mem. Accad. Sci. Torino Cl. Sci. Fis. Natur.», 3 (3), 25-43. | Zbl 0084.31901
(1957) -[4] Pseudo-Differential Operators with Positive Symbols, Séminaire Goulaouic-Meyer-Schwartz, n° 23.
and (1981) -[5] Subelliptic Eigenvalue Problems, preprint.
and (1981) -[6]
and (1977) - Elliptic Partial Differential Equations of Second Order, Springer, Berlin-Heidelberg-New York.[7] | Zbl 0219.49023
(1968) - Differential Geometry and the Calculus of Variations, Academic Press, New York and London.[8] Hypoelliptic Second-Order Differential Equations, «Acta Math.», 119, 147-171. | Zbl 0156.10701
(1967) -[9] On Functions of Boundel Mean Oscillation, «Comm. Pure Appl. Math.», 14, 147-171.
and (1961) -[10] Certain Properties of Generalized Solutions of Degenerate Elliptic Equations, «Dokl. Akad. Nauk SSSR», 197, 268-270 = «Soviet Math. Dokl.», 197, 432-435.
(1971) -[11] Qualitative Properties of the Generalized Solutions of Degenerate Elliptic Equations, «Ukrain. Mat. Ž.», 27, 320-328 = «Ukrainian Math. J.», 27, 256-263.
(1975) -[12] A New Proof of De Giorgi's Theorem Concerning the Regularity Problem for Elliptic Differential Equations, «Comm. Pure Appl. Math.», 13, 457-468. | Zbl 0111.09301
(1960) -[13] Boundary Value Problems for Some Degenerate-Elliptic Operators, «Ann. Mat. Pura Appl.», 80 (4), 1-122. | Zbl 0185.19201
and (1968) -[14] Boundary Behavior of Functions Holomorphic in Domains of Finite Type, «Proc. Nat. Acad. Sci. USA», 78, 6596-6598. | Zbl 0517.32002
, and (1981) -[15] Continuity of Solutions of Parabolic and Elliptic Equations, «Amer. J. Math.», 80, 931-954. | Zbl 0096.06902
(1958) -[16] Orbits of Families of Vector Fields and Integrability of Distributions, «Trans. Amer. Math. Soc.», 180, 931-954.
(1973) -[17]
(1978) - Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam.[18] Linear Elliptic Operators with Measurable Coefficients, «Ann. Scuola Norm. Sup. Pisa», 27 (3), 265-308.
(1973) -[19] The Local Regularity of solutions of Degenerate Elliptic Equations, «Comm. Partial Differential Equations», 7, 77-116. | Zbl 0498.35042
, and (1982) -