On the canonical development of Parseval formulas for singular differential operators
Carroll, Robert W.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 72 (1982), p. 65-70 / Harvested from Biblioteca Digitale Italiana di Matematica

Per funzioni opportune f,g si ottiene una formula di Parseval 𝐑Q,𝒬f𝒬gλ=ΔQ-1/2f,ΔQ-1/2g per operatori differenziali singolari di tipo dell'operatore radiale di Laplace-Beltrami. 𝐑Q è una funzione spettrale generalizzata di tipo Marčenko e può essere rappresentata per mezzo di un certo nucleo della trasmutazione.

Publié le : 1982-02-01
@article{RLINA_1982_8_72_2_65_0,
     author = {Robert W. Carroll},
     title = {On the canonical development of Parseval formulas for singular differential operators},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {72},
     year = {1982},
     pages = {65-70},
     zbl = {0584.47052},
     mrnumber = {0728254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1982_8_72_2_65_0}
}
Carroll, Robert W. On the canonical development of Parseval formulas for singular differential operators. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 72 (1982) pp. 65-70. http://gdmltest.u-ga.fr/item/RLINA_1982_8_72_2_65_0/

[1] Carroll, R. (1979) - Transmutation and operator differential equations, «Notas de Matematica», 67, North-Holland, Amsterdam. | Zbl 0416.35021

[2] Carroll, R. (1979) - Transmutation, Parseval formulas, and generalized spectral functions, «Notices Amer. Math. Soc.», Aug., A434 - Transmutation, generalized translation, and transform theory, I and II, Osaka Jour. Math., to appear.

[3] Carroll, R. (1979) - Some remarks on transmutation, «Applicable Anal.», 9, 291-294. | Zbl 0435.34010

[4] Carroll, R. - Transmutation, scattering theory, and special functions, North-Holland, Amsterdam, 1982.

[5] Carroll, R. (1981) - Remarks on the Gelfand-Levitan and Marčenko equations, «Applicable Anal.», 7, 153-157. | Zbl 0501.34025

[6] Carroll, R. - The Gelfand-Levitan and Marčenko equations via transmutation, «Rocky Mount. Jour. Math.», 12 (1982), 393-427.

[7] Carroll, R. - Some remarks on the generalized Gelfand-Levitan equation, «Jour. Math. Anal. Appl.», to appear.

[8] Carroll, R. (1981) - A survey of some recent results in transmutation, «Spectral Theory of Differential Operators», North-Holland, pp. 81-92.

[9] Carroll, R. - Elliptic transmutation, I, «Proc. Royal Soc.» Edinburgh, 91A (1982), 315-334.

[10] Carroll, R. (1981) - Some remarks on singular pseudodifferential operators, «Comm. Partial Diff. Eqs.», 6 (12), 1907-1927.

[11] Carroll, R. - Some inversion theorems of Fourier type, «Rev. Roumaine Math. Pures Appl.», to appear.

[12] Carroll, R. - On the characterization of transmutations, «Anais Acad. Brasil. Ciencias», 54 (1982), 271-280.

[13] Carroll, R. and Gilbert, J. (1981) - Scattering techniques in transmutation and some connection formulas for special functions, «Proc. Japan Acad.», 57, 34-37. | Zbl 0477.34020

[14] Carroll, R. and Gilbert, J. (1981) - Remarks on transmutation, scattering theory, and special functions, «Math Annalen», 258, 39-54. | MR 641667 | Zbl 0457.33005

[15] Carroll, R. and Santosa, F. (1981) - Résolution d'un problème inverse qui détermine complètement les données géophysiques, «C. R. Acad. Sci. Paris», 292, 23-26. | Zbl 0545.35091

[16] Carroll, R. and Santosa, F. (1981) - Scattering techniques for a one dimensional inverse problem in geophysics, «Math. Methods Appl. Sci.», 3, 145-171. | Zbl 0456.73086

[17] Chebli, H. (1979) - Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur (0,), «Jour. Math. Pures Appl.», 58, 1-19. | Zbl 0362.34019

[18] Flensted-Jensen, M. (1972) - Paley-Wiener type theorems for a differential operator connected with symmetric spaces, «Ark Math.», 10, 143-162. | Zbl 0233.42012

[19] Gasymov, M. (1975) - The expansion in eigenfunctions for a nonselfadjoint second order differential operator with a singularity at zero. «Trudy Let. Šk. Spekt. Teorii Oper.»..., Izd. Aim, Baku, pp. 20-45.

[20] Koornwinder, T. (1975) - A new proof of a Paley-Wiener type theorem for the Jacobi transform, «Ark. Mat.», 13, 145-159. | Zbl 0303.42022

[21] Levitan, B. (1973) - The theory of generalized translation operators, «Izd. Nauka», Moscow.

[22] Lions, J. (1956) - Opérateurs de Delsarte et problèmes mixtes, «Bull. Soc. Math. France», 84, 9-95. | Zbl 0075.10804

[23] Marcenko, V. (1977) - Sturm-Liouville operators and their applications, «Izd. Nauk». Dumka, Kiev.

[24] Siersma, J. (1979) - On a class of singular Cauchy problems, «Thesis», Groningen.

[25] Trimeche, K. (1981) - Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,), «Jour. Math. Pures Appl.», 60, 51-98. | Zbl 0416.44002