Viene studiata la semicontinuità rispetto alla topologia di per alcuni funzionali del Calcolo delle Variazioni dipendenti da funzioni a valori vettoriali.
@article{RLINA_1982_8_72_1_25_0, author = {Emilio Acerbi and Giuseppe Buttazzo and Nicola Fusco}, title = {Semicontinuity in $L^{\infty}$ for polyconvex integrals}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {72}, year = {1982}, pages = {25-28}, zbl = {0536.49007}, mrnumber = {0726087}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1982_8_72_1_25_0} }
Acerbi, Emilio; Buttazzo, Giuseppe; Fusco, Nicola. Semicontinuity in $L^{\infty}$ for polyconvex integrals. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 72 (1982) pp. 25-28. http://gdmltest.u-ga.fr/item/RLINA_1982_8_72_1_25_0/
[1] Semicontinuity problems in the calculus of variations, «Arch. Rational Mech. Anal.», to appear. | MR 751305
and -[2] Constitutive inequalities and existence theorems in nonlinear elastostatics, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Vol. I, pp. 187-241. «Res. Notes in Math.», No. 17, Pitman, London.
(1977) -[3] Convexity conditions and existence theorems in nonlinear elasticity, «Arch. Rational Mech. Anal.», vol. 63, pp. 337-403.
(1977) -[4] Some properties of -limits of integral functionals, «Annali di Matem. Pura Appl. (IV)», vol. CXXII, pp. 1-60. | Zbl 0474.49016
and (1979) -[5] Minimal hypersurfaces problems in parametric form with nonconvex integrands, «Indiana Univ. Math. J.», vol. 31, pp. 531-552. | Zbl 0465.53038
(1982) -[6] Semicontinuity of multiple integrals in ordinary form, «Arch. Rational Mech. Anal.», vol. 17, pp. 339-352. | Zbl 0128.10003
(1964) -[7] Lower semi-continuity in parametric variational problems, the area formula and related results, «Amer. J. of Math.», vol. 99, pp. 579-600 | Zbl 0369.49008
and (1975) -[8] Quasi-convexity and lower semicontinuity of multiple variational integrals of any order, «Trans. Amer. Math. Soc.», vol. 119, pp. 125-149.
(1965) -[9] Quasi-convexity and the semicontinuity of multiple integrals, «Pacific J. Math.», vol. 2, pp. 25-53. | Zbl 0046.10803
(1952) -[10] | Zbl 0142.38701
(1966) - Multiple integrals in the calculus of variations, Springer, Berlin.[11] On the definition and properties of certain variational integrals, «Trans. Amer. Math. Soc.», vol. 101, pp. 139-167. | Zbl 0102.04601
(1961) -