Let be an algebraic projective smooth and trigonal curve of genus . In this paper we define, in a way equivalent to that followed by A. Maroni in [1], an integer , called the species of , which is a birational invariant having the property that and mod(2). In section 1 we prove that for every and every , as before, there are trigonal curves of genus and species . In section 2 we define the space of moduli of trigonal curves of genus and species . We note that is irreducible and unirational and we prove that if and . As Corollaries we obtain the following facts: the general trigonal curve of even genus is of species , the general trigonal curve of odd genus is of species 1 and the space of moduli of trigonal curves of genus is unirational. The results of this note are valid over any algebraically closed field of any characteristic.
@article{RLINA_1981_8_70_2_96_0, author = {Fabio Bardelli and Andrea Del Centina}, title = {Osservazioni sullo spazio dei moduli delle curve trigonali}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {70}, year = {1981}, pages = {96-100}, zbl = {0528.14014}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1981_8_70_2_96_0} }
Bardelli, Fabio; Del Centina, Andrea. Osservazioni sullo spazio dei moduli delle curve trigonali. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 70 (1981) pp. 96-100. http://gdmltest.u-ga.fr/item/RLINA_1981_8_70_2_96_0/
[1] Serie lineari speciali sulle curve trigonali, «Ann. di Mat. Pura e Appl.», 25 IV. | Zbl 0061.35407
(1946) -[2] Footnotes to a paper of Beniamino Segre, preprint.
e .[3] Sul teorema di esistenza di Riemann, «Rend, del Circolo Mat. di Palermo», XLVI.
(1922) -[4] On Petri's analysis of the linear sistem of quadrics through a canonical curve, «Math. Ann.», 206.
(1973) -[5] | Zbl 0408.14001
e (1978) - Principles of algebraic geometry, Wiley.[6] Hurwitz schemes and irreducibility of the moduli of algebraic curves, «Ann. of Math.» 90. | Zbl 0194.21901
(1969) -[7]
(1965) - Geometric invariant theory, Springer-Verlag.[8] Gli automorfismi delle rigate geometriche razionali, «Ist. Lombardo Rend. Sc.» A, 113. | Zbl 0464.14014
(1979) -[9] | Zbl 0367.14001
(1977) - Algebraic geometry, Springer-Verlag.