Si considera l’equazione non lineare nell'incognita ((1,1) del testo) soddisfatta in un cilindro ( dominio limitato di ) con condizioni al contorno tipo Dirichlet o Neumann sulla superficie laterale di e con relazioni omogenee fra e sulle basi. Si stabiliscono per la (1) e nel caso di risonanza alcuni teoremi di perturbazione.
@article{RLINA_1980_8_69_6_327_0, author = {Michael W. Smiley}, title = {Results on linear and nonlinear hyperbolic boundary value problems at resonance}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {68}, year = {1980}, pages = {327-332}, zbl = {0492.35050}, mrnumber = {0690300}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1980_8_69_6_327_0} }
Smiley, Michael W. Results on linear and nonlinear hyperbolic boundary value problems at resonance. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 68 (1980) pp. 327-332. http://gdmltest.u-ga.fr/item/RLINA_1980_8_69_6_327_0/
[1] Functional analysis, nonlinear differential equations, and the alternative method, in «Functional Analysis and Nonlinear Differential Equations» ( , , , editors), Dekker, New York, pp. 1-197. | MR 477808
(1976) -[2] I, Interscience Publishers, New York. | MR 188745 | Zbl 0128.34803
and (1963) - Linear Operators, Vol.[3] | MR 419901
(1969) - Ordinary Differential Equations, «Wiley-Interscience», New York.[4] Periodic solutions of a class of hyperbolic equations containing a small parameter, «Archive Rational Mech. Anal.», 23, 380-398. | MR 206503 | Zbl 0152.10002
(1967) -[5] On the existence of periodic solutions for the equation «J. Differential Equations», 7, 509-626. | MR 265738
(1970) -[6] Periodic solutions of a class of weakly nonlinear evolution equations, «Archive Rational Mech. Anal.», 39, 294-322. | MR 274914 | Zbl 0211.12704
(1970) -[7] | MR 153974
(1961) - Equations Differentialles Opérationnelles et Problems Aux Limites, Springer-Verlag, Berlin.[8] I, Springer-Verlag, New York. | MR 350178
and (1972) - Non-Homogeneous Boundary Value Problems and Applications, Vol.[9] Periodic solutions of nonlinear hyperbolic partial differential equations, «Comm. Pure, Appl. Math.», 20, 145-205. | MR 206507
(1967) -[10] Periodic solutions of nonlinear hyperbolic partial differential equations. II, «Comm. Pure Appl. Math.», 22, 15-39. | MR 236504
(1968) -[11] Théorie des distributions à valeurs vectorielles, I, «Annales de L'Institute Fourier», 7, 1-141. | MR 107812
(1957) -[12] Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I, «Czech. Math. J.», 14, 341-382. | MR 174872 | Zbl 0178.45302
(1964) -