L’Autore dimostra che alcuni risultati ottenuti precedentemente da N.K. Thakare [Zeitschr. Angew. Math. Mech., 54 (1974), 283-284] seguono facilmente da altri noti risultati. L’Autore studia poi una generale classe di coppie di serie duali collegate ai polinomi di Jacobi.
@article{RLINA_1979_8_67_6_395_0, author = {Hari M. Srivstava}, title = {Certain dual series equations involving Jacobi polynomials}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {66}, year = {1979}, pages = {395-401}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1979_8_67_6_395_0} }
Srivstava, Hari M. Certain dual series equations involving Jacobi polynomials. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 395-401. http://gdmltest.u-ga.fr/item/RLINA_1979_8_67_6_395_0/
[1] Certain dual series equations involving Jacobi polynomials, «J. Indian Math. Soc. (N.S.)», 32, Suppl. I, 287-300.
(1968) -[2] II, McGraw-Hill, New York, Toronto and London.
, , and (1954) - Tables of integral transforms, Vol.[3] | Zbl 0039.29701
and (1948) - Formeln und Sätze für die Speziellen Funktionen der Mathematischen Physik, Springer-Verlag, Berlin, Göttingen and Heidelberg.[4] Some dual series equations involving Jacobi polynomials, «Proc. Cambridge Philos. Soc.», 59, 363-371. | Zbl 0115.28402
(1963) -[5] | Zbl 0092.06503
(1960) - Special functions, Macmillan, New York.[6] | Zbl 0139.28801
(1966) - Mixed boundary value problems in potential theory, North-Holland, Amsterdam.[7] Dual series relations. IV: Dual relations involving series of Jacobi polynomials, «Proc. Roy. Soc. Edinburgh Sect. A», 66, 185-191. | Zbl 0144.06202
(1964) -[8] A further note on certain dual equations involving Fourier-Laguerre series, «Nederl. Akad. Wetensch. Proc. Ser. A.», 76 = Indag. Math. 35, 137-141.
(1973) -[9] Orthogonal polynomials, «Amer. Math. Soc. Colloq. Publ.», Vol. XXIII, Third edition, «Amer. Math. Soc.», Providence, Rhode Island.
(1967) -[10] Some dual series equations involving Jacobi polynomials, «Z. Angew. Math. Mech.», 54, 283-284. | Zbl 0282.33019
(1974) -