In the first part of this work (sects. 1-3) we consider an irreducible normal variety of dimension 3 in a complex projective space. Let and be the virtual arithmetic genus and the second arithmetic genus of respectively. We prove that the equality holds if and only if is Cohen-Macaulay. As previously remarked in [11], we obtain the relation for any normal . We also give an example of ’s on which the inequality holds. The problems we treat here are strictly close to some arguments geometrically developed by Marchionna in [11]. In the second part (sec. 4) we consider a normal algebraic variety of dimension , in a complex projective space. Suppose has multiple subvarieties of dimension at most . By employing a theorem due to Grauert-Riemenschneider, we prove that , where denotes the dualizing sheaf, and is an ample (invertible) sheaf on . This fact implies the strong theorem on the regularity of the adjoint on a normal variety with isolated singularities.
@article{RLINA_1979_8_67_3-4_239_0, author = {Mauro Beltrametti and Marino Palleschi}, title = {Sull'annullamento di certi gruppi di coomologia di una variet\`a normale}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {66}, year = {1979}, pages = {239-247}, zbl = {0455.14009}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1979_8_67_3-4_239_0} }
Beltrametti, Mauro; Palleschi, Marino. Sull'annullamento di certi gruppi di coomologia di una varietà normale. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 239-247. http://gdmltest.u-ga.fr/item/RLINA_1979_8_67_3-4_239_0/
[1] 146. | Zbl 0215.37201
and (1970) - Introduction to Grothendieck Duality Theory. Springer,[2] Sull’annullamento di certi gruppi di coomologia di una varietà normale. Istituto Matematico «F. Enriques», Milano. Quaderno 28/S. | MR 274461 | Zbl 0455.14009
e (1979) -[3] Sulla dimensione virtuale di un divisore sopra una varietà algebrica normale. «Atti Accad. Scienze Torino», 98. | Zbl 0129.12903
(1963-64) -[4] Verschwindungssätze für analytische Kohomologiegruppen auf Komplexen Räumen. «Inv. Math.», 11. | MR 164965 | Zbl 0202.07602
and (1970) -[5] 155. | MR 302938
and (1970) - Verschwindungssätze fur analytische Kohomologiegruppen auf Komplexen Räumen. Several complex variables I, Maryland, Springer,[6] | MR 273066
(1977) - Algebraic Geometry. Springer.[7] 339. | MR 463157 | Zbl 0271.14017
et al. (1973) - Toroidal Embeddings I. Springer,[8] Some results in the transcendental theory of algebraic varieties. «Annals of Math.», 59. | MR 335518 | Zbl 0059.14605
(1954) -[9] Divisor class groups on algebraic varieties. «Proc. Nat. Acad. Sc. U.S.A.», 39. | MR 66690
and (1953) -[10] Sulla dimensione virtuale ed effettiva di un sistema lineare d'ipersuperficie appartenenti ad una varietà algebrica singolare. «Rendiconti di Matematica», 25. | MR 63122 | Zbl 0166.16601
(1966) -[11] Su un teorema di dualità debole per una varietà algebrica normale. «Bollettino U.M.I.», (4) 12. | MR 215844 | Zbl 0326.14011
(1975) -[12] Pathologies III. «Amer. J. Math.», 89. | MR 424821
(1967) -[13] Remarks on the Kodaira vanishing theorem. «Jour. Ind. Math. Soc.», 36. | MR 217091
(1972) -[14] The grade of an ideal or module. «Proc. Camb. Math. Soc.», 53. | MR 330164
(1957) -[15] Faisceaux algébriques cohérents. «Annals of Math.», 61. | MR 82967
(1955) -[16] On blowing up conductor ideals. «Math. Proc. Camb. Phil. Soc.», 83. | MR 68874 | Zbl 0383.14001
(1978) -[17] Algebraic Sheaf theory. «Bull. Amer. Math. Soc.», 62. | MR 463171
(1956) -[18] Complete linear systems on normal varieties and a generalization of a Lemma of Enriques-Severi. «Ann. of Math.», 55. | Zbl 0047.14803
(1952) - (1969) - An introduction to the theory of algebraic surfaces. Springer.