Si dimostrano due risultati nella teoria di approssimazione.
@article{RLINA_1979_8_67_3-4_204_0, author = {Simeon Reich}, title = {A Remark on a Problem of Asplund}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {66}, year = {1979}, pages = {204-205}, zbl = {0464.41025}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1979_8_67_3-4_204_0} }
Reich, Simeon. A Remark on a Problem of Asplund. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 204-205. http://gdmltest.u-ga.fr/item/RLINA_1979_8_67_3-4_204_0/
[1] Finite dimensional Banach spaces with a.e. differentiable metric projection, to appear. | MR 248317
-[2] Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, «Leningrad State Univ. Ann. Math.», Ser. 6, 3-35. | MR 556619
(1939) -[3] Suns, moons, and quasi-polyhedra, «J. Approximation Theory», 6, 176-201. | MR 3051 | Zbl 0238.41014
and (1972) -[4] Differentiability of the metric projection in finite-dimensional euclidean space, «Proc. Amer. Math. Soc.», 38, 218-219. | MR 364982
(1973) -[5] A characterization of convex sets, «Amer. Math. Monthly», 56, 247-249. | MR 310150 | Zbl 0034.10501
(1949) -[6] Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, MRC Report - 1856, and «Israel J. Math.», 32, 44-58. | MR 29519 | Zbl 0427.47049
and (1979) -[7] On Chebyshev sets in Banach spaces, «Dokl. Akad. Nauk SSSR», 141, 19-20. | MR 531600
(1961) -