A Remark on a Problem of Asplund
Reich, Simeon
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979), p. 204-205 / Harvested from Biblioteca Digitale Italiana di Matematica

Si dimostrano due risultati nella teoria di approssimazione.

Publié le : 1979-09-01
@article{RLINA_1979_8_67_3-4_204_0,
     author = {Simeon Reich},
     title = {A Remark on a Problem of Asplund},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {66},
     year = {1979},
     pages = {204-205},
     zbl = {0464.41025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1979_8_67_3-4_204_0}
}
Reich, Simeon. A Remark on a Problem of Asplund. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 204-205. http://gdmltest.u-ga.fr/item/RLINA_1979_8_67_3-4_204_0/

[1] Abatzoglou, T. - Finite dimensional Banach spaces with a.e. differentiable metric projection, to appear. | MR 248317

[2] Alexandrov, A.D. (1939) - Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, «Leningrad State Univ. Ann. Math.», Ser. 6, 3-35. | MR 556619

[3] Amir, D. and Deutsch, F. (1972) - Suns, moons, and quasi-polyhedra, «J. Approximation Theory», 6, 176-201. | MR 3051 | Zbl 0238.41014

[4] Asplund, E. (1973) - Differentiability of the metric projection in finite-dimensional euclidean space, «Proc. Amer. Math. Soc.», 38, 218-219. | MR 364982

[5] Klee, V. (1949) - A characterization of convex sets, «Amer. Math. Monthly», 56, 247-249. | MR 310150 | Zbl 0034.10501

[6] Nevanlinna, O. and Reich, S. (1979) - Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, MRC Report - 1856, and «Israel J. Math.», 32, 44-58. | MR 29519 | Zbl 0427.47049

[7] Vlaslov, L.P. (1961) - On Chebyshev sets in Banach spaces, «Dokl. Akad. Nauk SSSR», 141, 19-20. | MR 531600