Sulle rigate ellittiche
Lanteri, Antonio ; Palleschi, Marino
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979), p. 87-94 / Harvested from Biblioteca Digitale Italiana di Matematica

Let X𝐏r be a complex smooth algebraic surface, the general hyperplane section of which is an elliptic curve. A classical Theorem due to G. Castelnuovo ([1]) states that if X is not an elliptic scroll then X is a rational surface. Castelnuovo achieves this result by showing that if X is not a scroll, then a suitable linear system of hypersurfaces in 𝐏r exhibits X as a projective model of a surface of degree d in 𝐏d, which is not a scroll; hence X is rational. In this paper we supply a new proof of the previous result (Teorema 3.1) (over an algebraically closed field). This proof allows us to describe, in the class of the (smooth) linearly normal surfaces, the elliptic scrolls as the surfaces of degree d in 𝐏d-1 with elliptic general hyperplane section. Our argument is supported by the following fact (Proposizione 3.1): let ρ:SY𝐏r-1 be the projection of a smooth surface S𝐏r from a point pS; if Y is a (smooth) scroll then either S is a rational surface or S itself is a scroll. In the latter case ρ is an elementary transformation with center p; hence the elementary transformations, introduced by Nagata in [5], can be seen as projections. Finally we give an explicit description of projective models of the elliptic scrolls. This construction generalizes the one given in [3] for the elliptic scroll in 𝐏4 and shows the links between the degree, the invariant and the hyperplane class of such surfaces.

Publié le : 1979-07-01
@article{RLINA_1979_8_67_1-2_87_0,
     author = {Antonio Lanteri and Marino Palleschi},
     title = {Sulle rigate ellittiche},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {66},
     year = {1979},
     pages = {87-94},
     zbl = {0474.14019},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLINA_1979_8_67_1-2_87_0}
}
Lanteri, Antonio; Palleschi, Marino. Sulle rigate ellittiche. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 87-94. http://gdmltest.u-ga.fr/item/RLINA_1979_8_67_1-2_87_0/

[1] Castelnuovo, G. (1894) - Sulle superficie algebriche le cui sezioni piane sono curve ellittiche. «Rend. Accad. Naz. Lincei» (5) 3, 229-232. | MR 330515

[2] Hartshorne, R. (1977) - Algebraic Geometry. Springer Verlag, Berlin-Heidelberg-New York. | Zbl 0367.14001

[3] Lanteri, A. e Palleschi, M. (1978) - Osservazioni sulla rigata geometrica ellittica di 𝐏4. «Istituto Lombardo (Rend. Sc.)», A 112, 223-233. | MR 463157

[4] Lanteri, A. e Palleschi, M. (1979) - Sulle superfici di grado piccolo in 𝐏4. «Istituto Lombardo (Rend. Sc.)», A 113 (in corso di stampa).

[5] Nagata, M. (1960) - On rational surfaces I. «Mem. Coll. Sci. Kyoto» (A) 32, 351-370.

[6] Nagata, M. (1970) - On self-intersection number of a section on a ruled surface. «Nagoya Math. J.», 37 191-196. | MR 126444

[7] Shafarevich, I.R. e altri (1965) - Algebraic Surfaces. «Proc. Steklov Inst. Math.», 75 (trad. «Amer. Math. Soc.», 1967). | MR 258829