Let be a complex smooth algebraic surface, the general hyperplane section of which is an elliptic curve. A classical Theorem due to G. Castelnuovo ([1]) states that if is not an elliptic scroll then is a rational surface. Castelnuovo achieves this result by showing that if is not a scroll, then a suitable linear system of hypersurfaces in exhibits as a projective model of a surface of degree in , which is not a scroll; hence is rational. In this paper we supply a new proof of the previous result (Teorema 3.1) (over an algebraically closed field). This proof allows us to describe, in the class of the (smooth) linearly normal surfaces, the elliptic scrolls as the surfaces of degree in with elliptic general hyperplane section. Our argument is supported by the following fact (Proposizione 3.1): let be the projection of a smooth surface from a point ; if is a (smooth) scroll then either is a rational surface or itself is a scroll. In the latter case is an elementary transformation with center ; hence the elementary transformations, introduced by Nagata in [5], can be seen as projections. Finally we give an explicit description of projective models of the elliptic scrolls. This construction generalizes the one given in [3] for the elliptic scroll in and shows the links between the degree, the invariant and the hyperplane class of such surfaces.
@article{RLINA_1979_8_67_1-2_87_0, author = {Antonio Lanteri and Marino Palleschi}, title = {Sulle rigate ellittiche}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {66}, year = {1979}, pages = {87-94}, zbl = {0474.14019}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1979_8_67_1-2_87_0} }
Lanteri, Antonio; Palleschi, Marino. Sulle rigate ellittiche. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 87-94. http://gdmltest.u-ga.fr/item/RLINA_1979_8_67_1-2_87_0/
[1] Sulle superficie algebriche le cui sezioni piane sono curve ellittiche. «Rend. Accad. Naz. Lincei» (5) 3, 229-232. | MR 330515
(1894) -[2] | Zbl 0367.14001
(1977) - Algebraic Geometry. Springer Verlag, Berlin-Heidelberg-New York.[3] Osservazioni sulla rigata geometrica ellittica di . «Istituto Lombardo (Rend. Sc.)», A 112, 223-233. | MR 463157
e (1978) -[4] Sulle superfici di grado piccolo in . «Istituto Lombardo (Rend. Sc.)», A 113 (in corso di stampa).
e (1979) -[5] On rational surfaces I. «Mem. Coll. Sci. Kyoto» (A) 32, 351-370.
(1960) -[6] On self-intersection number of a section on a ruled surface. «Nagoya Math. J.», 37 191-196. | MR 126444
(1970) -[7] Algebraic Surfaces. «Proc. Steklov Inst. Math.», 75 (trad. «Amer. Math. Soc.», 1967). | MR 258829
e altri (1965) -