A finite group is called Z-sequenceable if its non-identity elements can be listed so that for . Various conditions are determined for a group G to be Z-sequenceable. Moreover several well known classes of groups which satisfy such conditions are found out.
@article{RLINA_1979_8_66_2_97_0, author = {Anna Maria Pagliuca Raugei and Sandra Tucci Scarselli}, title = {Sui gruppi Z-sequenziabili}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {66}, year = {1979}, pages = {97-102}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1979_8_66_2_97_0} }
Pagliuca Raugei, Anna Maria; Tucci Scarselli, Sandra. Sui gruppi Z-sequenziabili. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 97-102. http://gdmltest.u-ga.fr/item/RLINA_1979_8_66_2_97_0/
[1] Sequences in non-abelian groups with distinct partial products; «Aequat. Mat.», 14, 59-66. | Zbl 0325.20020
(1976) -[2] On some sequencing problems in finite groups; «Discrete Math.», 19, 77-84. | Zbl 0376.20020
e (1977) -[3] Sequences in groups with distincts partial products; «Pacific J. Math.», 11, 1309-1313. | Zbl 0103.26202
(1961) -[4] On a kind of connectivity in finite groups, «Sci. Rep. Tokyo Kyoiku Daigaku», Sect. A9, 158-162.
(1967) -[5] A Sufficient Condition on Centralizers for a Finite Group to Contain a Proper CCT-Subgroup; «Journal of Algebra», 42, 549-556. | Zbl 0349.20009
(1976) -[6] Fondamenti di Teoria dei Gruppi; Roma.
(1965) -