It is shown that, under very general hypotheses, the linear elliptic differential system Lu = 0 possesses the Runge property when and only when the Dirichlet problem for the operator (i.e. the generalized biharmonic problem) has only one solution with a finite energy integral.
@article{RLINA_1979_8_66_2_110_0, author = {Pieranita Castellani Rizzonelli}, title = {Propriet\`a di approssimazione $\mathcal{L}^{2}$ di Runge e problema biarmonico generalizzato}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {66}, year = {1979}, pages = {110-116}, zbl = {0463.35028}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1979_8_66_2_110_0} }
Castellani Rizzonelli, Pieranita. Proprietà di approssimazione $\mathcal{L}^{2}$ di Runge e problema biarmonico generalizzato. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 66 (1979) pp. 110-116. http://gdmltest.u-ga.fr/item/RLINA_1979_8_66_2_110_0/
[1] 8, Springer Verlag, 1-176. | Zbl 0138.36104
(1965) - Linear elliptic differential systems and eigenvalue problems, «Lecture Notes in Mathematics», N.[2] A Stability Theorem for Solutions of Abstract Differential Equations and Its Application to the Study of the Local Behavior of Solutions of Elliptic Equations, «Communications on Pure and Applied Mathematics», Vol. IX, 747-766. | Zbl 0072.33004
(1956) -[3] Existence et Approximation des Solutions des Équations aux Dérivées Partielles et des Équations de Convolution, «Annales de l'Institut Fourier», Vol. VI, 271-354. | Zbl 0071.09002
(1955-1956) -[4] Approximation by Solutions of Partial Differential Equations, «American Journal of Mathematics», Vol. 84, 134-160. | Zbl 0111.09601
(1962) -[5] Generalized Biharmonic Problem and Related Eingevalue Problems, Blanch Anniversary Volume, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, 35-44.
(1967) -[6] Interpolation and Approximation by Rational Functions in the Complex Domain, «American Math. Soc. Colloquium Publications», Vol. XX, 1-382.
(1935) -