Per equazioni operazionali , ed operatori in uno spazio di Hilbert reale , lineare, non lineare, e sotto moderate ipotesi su ed , l'insieme delle soluzioni è, generalmente, una varietà di dimensione uguale all'indice di Fredholm di . Precisamente, questo accade effettivamente se la proiezione di su un opportuno sottospazio di dimensione finita in non cade su un certo insieme di , di misura zero oppure di prima categoria.
@article{RLINA_1978_8_65_6_239_0, author = {P.J. McKenna and Howard Shaw}, title = {The structure of the solution set of some nonlinear problems}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {64}, year = {1978}, pages = {239-243}, zbl = {0446.47057}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1978_8_65_6_239_0} }
McKenna, P.J.; Shaw, Howard. The structure of the solution set of some nonlinear problems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 64 (1978) pp. 239-243. http://gdmltest.u-ga.fr/item/RLINA_1978_8_65_6_239_0/
[1] On the inversion of some differentiable mappings with singularities between Banach spaces, «Ann. di Mat. Pura Appl.», IV, 93, 231-247. | MR 320844 | Zbl 0288.35020
and (1972) -[2] On the solutions of a nonlinear Dirichlet problem, «Indiana J. Math.», 24, 837-846. | MR 377274 | Zbl 0329.35026
and (1975) -[3] Characterisations of the ranges of some nonlinear operators and applications to boundary value problems, «Ann. Scuola Norm. Sup. Pisa», 4, 225-326. | MR 513090 | Zbl 0386.47035
and (1978) -[4] Functional analysis, nonlinear differential equations, and the alternative method, in «Nonlinear Functional Analysis and Differential Equations» ( , and , Eds.) Dekker, New York, 1-197. | MR 487630
(1976) -[5] Functional analysis and periodic solutions of nonlinear differential equations. «Contributions to Differential Equations, John Willey», 1, 149-187. | MR 151678
(1963) -[6] Functional analysis and Galerkin's method, «Michigan Math. Journal», 11, 385-414. | MR 173839 | Zbl 0192.23702
(1964) -[7] Boundary value problems with jumping nonlinearities, «Cas Prestovani Mat.», 101, 69-87. | MR 447688 | Zbl 0332.34016
(1976) -[8] Applications of alternative problems, Lecture notes of the Lefschetz Center for Dynamical Systems, Brown University.
(1971) -[9] On a superelliptic boundary value problem, to appear. | Zbl 0391.35034
and -[10] On semicoercive problems, «Indiana Univ. Math. J.», 23, 645-654. | MR 341214 | Zbl 0259.47051
(1974) -[11] Remarks on some quasilinear elliptic equations, «Comm. Pure Appl. Math.», 28, 567-597. | MR 477445 | Zbl 0325.35038
and (1975) -[12] Nonlinear perturbations of elliptic boundary value problems at resonance, «J. Math. Mech.», 19, 609-623. | MR 267269 | Zbl 0193.39203
and (1970) -[13] Topologie et equations fonctionnelles, «Ann. Sci. École Norm. Sup.», 51, 45-78. | MR 1509338 | Zbl 60.0322.02
and (1934) -[14] On the structure of the set of solutions to some nonlinear boundary value problems, «J. Diff. Equations», to appear. | MR 561977 | Zbl 0397.35010
and -[15] On a superlinear elliptic boundary value problem at resonance, «Proc. Amer. Math. Soc.», to appear. | MR 524297
-[16] On the reduction of a semilinear hyperbolic problem to a Landesman-Lazer type problem, to appear in «Houston Journal of Math.». | MR 523615 | Zbl 0411.35059
-[17] Some minimax theorems and applications to nonlinear partial differential equations, in «Nonlinear Analysis, a volume in honor of E. H. Rothe», Academic Press, 161-177. | MR 501092
(1978) -[18] A nonlinear elliptic boundary value problem at resonance, «J. Diff. Equations», 26, 335-346. | MR 463687 | Zbl 0341.35039
(1977) -[19] On weak solutions of semilinear hyperbolic equations, «An. Acad. Brasil, Ci.», 42, 645-671. | MR 306715
(1971) -[20] A sharp sufficient conditions for solution of a nonlinear elliptic boundary value problem, «J. Diff. Equations», 8, 580-588. | MR 267267 | Zbl 0209.13003
(1970) -[21] | MR 180824
(1965) - Functional Analysis, Springer Verlag, Berlin.