Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations
Chen, Lu-San ; Yu, Fong-Ming
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 64 (1978), p. 100-103 / Harvested from Biblioteca Digitale Italiana di Matematica

Per la equazione differenziale nonlineare con argomento ritardato (r(t)x(t))(n-1)+i=1mpi(t)fi(x[gi(t)])=q(t) si danno condizioni sufficienti per r,pi,fi,gi e q per le quali tutte le soluzioni non sono oscillatorie.

Publié le : 1978-10-01
@article{RLINA_1978_8_65_3-4_100_0,
     author = {Lu-San Chen and Fong-Ming Yu},
     title = {Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {64},
     year = {1978},
     pages = {100-103},
     zbl = {0428.34047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1978_8_65_3-4_100_0}
}
Chen, Lu-San; Yu, Fong-Ming. Sufficient conditions for nonoscillation of forced n-th order retarded functional differential equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 64 (1978) pp. 100-103. http://gdmltest.u-ga.fr/item/RLINA_1978_8_65_3-4_100_0/

[1] Chen, Lu-San (1976) - Sufficient conditions for nonoscillation of n-th order nonlinear differential equations, «Rend. Accad. Naz. Lincei», 60, 27-31. | MR 481248 | Zbl 0367.34026

[2] Chen, Lu-San, Yeh, Cheh-Chih and Lin, Jinn-Tein (1978) - Asymptotic behavior of solutions of functional n-th order differential equations, «Bull. London Math. Soc.», 1O, 186-190. | MR 499600 | Zbl 0412.34069

[3] Graef, J. R. and Spikes, P. W. (1975) - Sufficient conditions for the equation (a(t)x(t))+h(t,x(t),x(t))+q(t)f(x(t),x(t))=e(t,x(t),x(t)) to be nonoscillatory, «Funkcialaj Ekvacioj», 18, 35-40. | MR 385234 | Zbl 0331.34030

[4] Graef, J. R. (1974) - Continuity boundedness and asymptotic behavior of solutions x′′+q(t)f(x)=r(t), «Ann. Mat. Pura Appl.», 101, 307-320. | MR 361274 | Zbl 0296.34027

[5] Graef, J. R. (1974) - A nonoscillation result for second order ordinary differential equations, «Rend. Accad. Sci. Fis. Mat. Napoli», (4) 41, 3-12. | MR 486795

[6] Hammett, M. E. (1971) - Nonoscillation properties of a nonlinear differential equation, «Proc. Amer. Math. Soc.», 30, 92-96. | MR 279384 | Zbl 0215.15001

[7] Londen, S. (1973) - Some nonoscillation theorems for a second order nonlinear differential equations, «SIAM J. Math. Anal.», 4, 460-465. | MR 333342 | Zbl 0258.34036

[8] Singh, B. (1975) - Nonoscillation of forced fourth order retarded equations, «SIAM J. Appl. Math.», 28, 265-269. | MR 361376 | Zbl 0294.34051

[9] Singh, B. (1977) - Forced nonoscillations in second order functional equations, «Hiroshima Math. J.», 7, 657-665. | MR 499608 | Zbl 0411.34042