In a complex projective space we consider a non-singular algebraic variety of dimension . denotes a complete ample linear system on and denote non-singular hypersurfaces belonging to positive multiples of the linear system . We suppose every subvariety is non singular and has a regular dimension . In this case the subvariety is called a quasi-characteristic variety of index of the system . A divisor of is said to be -times of the first kind mod if for each relative integer the complete linear system , belonging to , cuts out a complete system on every quasi-characteristic variety of the system . The above conditions can be reduced. In fact if for each the complete system cuts out a complete system on a fixed quasi-characteristic variety of index of the system , then the complete system cuts out a complete system on any quasi-characteristic variety of index of the system . We denote with the -th cohomology module of with coefficients in the sheaf of germs of meromorphic functions which are multiples of the divisor . With the previous notations, a characteristic condition for to be -times of the first kind mod is that , for each integer . A characteristic condition for to be -times of the first kind mod a suitable multiple of every ample linear system is that , . We recall that the theory of divisors of the first kind was introduced and developed with geometrical language and instruments by Marchionna (cfr. [6], [7]). In this paper (and in the following Note II with the same title) we reconstruct the whole theory in an independent way, by employing cohomology theory.
@article{RLINA_1978_8_64_4_367_0, author = {Marino Palleschi}, title = {Sui divisori di prima specie di una variet\`a algebrica non singolare}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {64}, year = {1978}, pages = {367-373}, zbl = {0427.14003}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1978_8_64_4_367_0} }
Palleschi, Marino. Sui divisori di prima specie di una varietà algebrica non singolare. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 64 (1978) pp. 367-373. http://gdmltest.u-ga.fr/item/RLINA_1978_8_64_4_367_0/
[1] A note on the Riemann-Roch Theorem, «Journal London Math. Soc.», 30, 291-296. | MR 78010 | Zbl 0065.14101
(1955) -[2] On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux, «Proc. Nat. Acad. Sc. U.S.A.», 39, 865-868. | MR 63120 | Zbl 0051.14502
(1953) -[3] Some results in the transcendental theory of algebraic varieties, «Annals of Math.», 59, 86-133. | MR 66690 | Zbl 0059.14605
(1954) -[4] Divisor class groups on algebraic varieties, «Proc. Nat. Acad. Sc. U.S.A.». 39. 872-877. | MR 63122 | Zbl 0051.14601
e (1953) -[5] Sui multipli del sistema delle sezioni iperpiane di una varietà algebrica non singolare, «Annali di Matem.». ser. IV, 54, 159-199. | MR 133722 | Zbl 0103.14201
(1961) -[6] Sui multipli dei sistemi lineari d'ipersuperficie appartenenti ad una varietà algebrica pluriregolare, «Rendiconti di Matematica», (3-4), 21, 322-353. | MR 149357 | Zbl 0113.36503
(1962) -[7] V, Academic Press, 439-456. | MR 276235 | Zbl 0212.53803
(1971) - Sui divisori di prima specie di una varietà algebrica, «Symposia Mathematica» (Ist. Naz. Alta Matematica), vol.[8] Un théorème de dualité, «Comment. Math. Helv.», 29, 9-26. | MR 67489 | Zbl 0067.16101
(1955) -[9] Faisceaux algébriques cohérents, «Annals of Mathem.», 61, 197-278. | MR 68874
(1955) -