Sui divisori di prima specie di una varietà algebrica non singolare
Palleschi, Marino
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 64 (1978), p. 367-373 / Harvested from Biblioteca Digitale Italiana di Matematica

In a complex projective space we consider a non-singular algebraic variety Vd of dimension d2. |X| denotes a complete ample linear system on Vd and Xm1,Xm2,,Xmq denote qd1 non-singular hypersurfaces belonging to q positive multiples |m1X|,,|mqX| of the linear system |X|. We suppose every subvariety Vd-i=j=1iXmj(i=1,2,,q) is non singular and has a regular dimension di. In this case the subvariety Vd-q=j=1qXmj is called a quasi-characteristic variety of index q of the system |X|. A divisor A of Vd is said to be q-times of the first kind mod |X| if for each relative integer l the complete linear system |lXA|, belonging to Vd, cuts out a complete system on every quasi-characteristic variety Vd-q of the system |X|. The above conditions can be reduced. In fact if for each l the complete system |lXA| cuts out a complete system on a fixed quasi-characteristic variety of index q of the system |X|, then the complete system |lX-A| cuts out a complete system on any quasi-characteristic variety of index pq of the system |X|. We denote with Hq(Vd,𝒪(D)) the q-th cohomology module of Vd with coefficients in the sheaf 𝒪(D) of germs of meromorphic functions which are multiples of the divisor D. With the previous notations, a characteristic condition for A to be q-times of the first kind mod |X| is that Hp(Vd,(𝒪)(lX-A))=0, for each integer l,p=1,2,,q. A characteristic condition for A to be q-times of the first kind mod a suitable multiple of every ample linear system is that Hp(Vd,𝒪(-A))=(0), (p=1,2,,q). We recall that the theory of divisors of the first kind was introduced and developed with geometrical language and instruments by Marchionna (cfr. [6], [7]). In this paper (and in the following Note II with the same title) we reconstruct the whole theory in an independent way, by employing cohomology theory.

Publié le : 1978-04-01
@article{RLINA_1978_8_64_4_367_0,
     author = {Marino Palleschi},
     title = {Sui divisori di prima specie di una variet\`a algebrica non singolare},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {64},
     year = {1978},
     pages = {367-373},
     zbl = {0427.14003},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLINA_1978_8_64_4_367_0}
}
Palleschi, Marino. Sui divisori di prima specie di una varietà algebrica non singolare. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 64 (1978) pp. 367-373. http://gdmltest.u-ga.fr/item/RLINA_1978_8_64_4_367_0/

[1] Hodge, W. V. D. (1955) - A note on the Riemann-Roch Theorem, «Journal London Math. Soc.», 30, 291-296. | MR 78010 | Zbl 0065.14101

[2] Kodaira, K. (1953) - On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux, «Proc. Nat. Acad. Sc. U.S.A.», 39, 865-868. | MR 63120 | Zbl 0051.14502

[3] Kodaira, K. (1954) - Some results in the transcendental theory of algebraic varieties, «Annals of Math.», 59, 86-133. | MR 66690 | Zbl 0059.14605

[4] Kodaira, K. e Spencer, D. C. (1953) - Divisor class groups on algebraic varieties, «Proc. Nat. Acad. Sc. U.S.A.». 39. 872-877. | MR 63122 | Zbl 0051.14601

[5] Marchionna, E. (1961) - Sui multipli del sistema delle sezioni iperpiane di una varietà algebrica non singolare, «Annali di Matem.». ser. IV, 54, 159-199. | MR 133722 | Zbl 0103.14201

[6] Marchionna, E. (1962) - Sui multipli dei sistemi lineari d'ipersuperficie appartenenti ad una varietà algebrica pluriregolare, «Rendiconti di Matematica», (3-4), 21, 322-353. | MR 149357 | Zbl 0113.36503

[7] Marchionna, E. (1971) - Sui divisori di prima specie di una varietà algebrica, «Symposia Mathematica» (Ist. Naz. Alta Matematica), vol. V, Academic Press, 439-456. | MR 276235 | Zbl 0212.53803

[8] Serre, J. P. (1955) - Un théorème de dualité, «Comment. Math. Helv.», 29, 9-26. | MR 67489 | Zbl 0067.16101

[9] Serre, J. P. (1955) - Faisceaux algébriques cohérents, «Annals of Mathem.», 61, 197-278. | MR 68874