We consider groups whose subgroups are all normal-sensitive. We prove that these groups are separated and that their second derived group is a periodic group with all elements odd order. We give criteria for solvability of such groups and we prove that among these groups those which are solvable are exactly the solvable groups in which normality is a transitive relation.
@article{RLINA_1978_8_64_3_265_0, author = {Brunella Bruno and Maurizio Emaldi}, title = {Sui gruppi nei quali sono normali sensitivi tutti i sottogruppi}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {64}, year = {1978}, pages = {265-269}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1978_8_64_3_265_0} }
Bruno, Brunella; Emaldi, Maurizio. Sui gruppi nei quali sono normali sensitivi tutti i sottogruppi. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 64 (1978) pp. 265-269. http://gdmltest.u-ga.fr/item/RLINA_1978_8_64_3_265_0/
[1] Locally generalized hamiltonian groups, «Siberian Math. J.», 7, 391-393. | MR 195952
(1966) -[2] The intersection map of subgroups, «Arch. Math.», 25, 337-340. | MR 360822 | Zbl 0291.20028
(1974) -[3] | MR 109842 | Zbl 0094.24501
(1960) - The theory of groups. Chelsea.[4] An essay on free products of groups with amalgamation, «Phil. Trans. Royal Soc., London» (A), 246, 503-554. | MR 62741 | Zbl 0057.01702
(1954) -[5] Groups in which normality is a transitive relation, «Proc. Camb. Phil. Soc.», 60, 21-38. | MR 159885 | Zbl 0123.24901
(1964) - (1972) - Finiteness conditions and generalized soluble groups. Springer.