L'Autore prova che alcuni risultati sulle funzioni generatrici ottenuti da O. Shanker [«J. Australian Math. Soc.», 15 (1973), 389-392] sono equivalenti ad altri noti risultati. Si provano alcune generalizzazioni e la loro applicazione a famiglie polinomiali di Bessel, Brafman, Gegenbauer, Hermite, Jacobi e Laguerre.
@article{RLINA_1977_8_63_5_328_0, author = {Hari M. Srivastava}, title = {A note on certain generating functions for the classical polynomials}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {62}, year = {1977}, pages = {328-333}, zbl = {0362.33005}, mrnumber = {0548596}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1977_8_63_5_328_0} }
Srivastava, Hari M. A note on certain generating functions for the classical polynomials. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 62 (1977) pp. 328-333. http://gdmltest.u-ga.fr/item/RLINA_1977_8_63_5_328_0/
[1] Some generating functions for Laguerre and Hermite polynomials, «Canad. J. Math.», 9, 180-187. | MR 85363 | Zbl 0078.25702
(1957) -[2] New generating functions for classical polynomials, «Proc. Amer. Math. Soc.», 21, 263-268. | MR 236438 | Zbl 0175.07302
(1969) -[3] Some generating functions for Laguerre polynomials, «Duke Math. J.», 35, 825-827. | MR 240351 | Zbl 0167.35202
(1968) -[4] Some generalizations of Vandermonde's convolution, «Amer. Math. Monthly», 63, 84-91. | MR 75170 | Zbl 0072.00702
(1956) -[5] Operational formulas connected with two generalizations of Hermite polynomials, «Duke Math. J.», 29, 51-63. | MR 132853 | Zbl 0108.06504
and (1962) -[6] A new class of orthogonal polynomials: the Bessel polynomials, «Trans. Amer. Math. Soc.», 65, 100-115. | MR 28473 | Zbl 0031.29701
and (1949) -[7] I (Translated from the German by D. Aeppli), Springer-Verlag, New York, Heidelberg and Berlin. | MR 344042
and (1972) - Problems and Theorems in Analysis, Vol.[8] | MR 231725 | Zbl 0194.00502
(1968) — Combinatorial Identities, John Wiley and Sons, Inc., New York, London and Sydney.[9] On generating functions for classical polynomials, «J. Austral. Math. Soc.», 15, 389-392. | MR 326026 | Zbl 0276.33025
(1973) -[10] A class of generating functions for generalized hypergeometric polynomials, «J. Math. Anal. Appl.», 35, 230-235. | MR 277776 | Zbl 0212.40901
(1971) -[11] Some polynomials defined by generating relations, «Trans. Amer. Math. Soc.», 205, 360-370; see also Addendum, ibid., 226 (1977), 393-394. | MR 430365
and (1975) -[12] A new class of generating functions for hypergeometric polynomials, «Proc. Amer. Math. Soc.», 25, 405-412. | MR 264123 | Zbl 0192.41501
(1970) —