Sull'omogeneizzazione di un problema variazionale con vincoli sul gradiente
Carbone, Luciano
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 62 (1977), p. 10-14 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove a compactness and representation theorem for the Γ-convergence of sequences of convex integral functionals of Variational Calculus with constraints on the gradient. We describe the limit problem for the Homogenization concerning functionals of such a type.

Publié le : 1977-08-01
@article{RLINA_1977_8_63_1-2_10_0,
     author = {Luciano Carbone},
     title = {Sull'omogeneizzazione di un problema variazionale con vincoli sul gradiente},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {62},
     year = {1977},
     pages = {10-14},
     zbl = {0395.49029},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLINA_1977_8_63_1-2_10_0}
}
Carbone, Luciano. Sull'omogeneizzazione di un problema variazionale con vincoli sul gradiente. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 62 (1977) pp. 10-14. http://gdmltest.u-ga.fr/item/RLINA_1977_8_63_1-2_10_0/

[1] Bensoussan, A., Lions, J. L. and Papanicolaou, G. - Some asymptotic results for solution of variational inequalities with higly oscillating periodic coefficients, di prossima pubblicazione.

[2] Carbone, L. - Sur la Γ--convergence des integrales du type de l'énergie sur des fonctions à gradient borné, J. Math, pures et. appl., 56, 1977, 79-84. | MR 482459

[3] Carbone, L. - Γ--convergence d'integrales sur des fonctions avec des contraintes sur le gradient et des obstacles, Comm. in partial differential equations, 2 (6), 1977, 627-651. | MR 493642 | Zbl 0357.49020

[4] De Giorgi, E. e Franzoni, T. (1975) - Su un tipo di convergenza variazionale, «Rend. Acc. Naz. Lincei Roma», 63, 6, 842-850. | MR 448194

[5] De Giorgi, E. (1977) - Γ-convergenza e G-convergenza, «Boll. Un. Mat. Ital.», 14 A, 213-220. | MR 458348

[6] Marcellini, P. - Periodic solutions and homogenization of nonlinear variational problems, di prossima pubblicazione su Ann. Mat. Pura Appl.. | MR 515958

[7] Spagnolo, S. (1976) - Convergence in energy for Elliptic Operators, Numerical Solution of Partial Differential Equations. III Maryland, Accademic Press, 469-498. | MR 477444