On the mean convergence of Dini series
Agrawal, S.R. ; Patel, C.M.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 62 (1977), p. 305-315 / Harvested from Biblioteca Digitale Italiana di Matematica

In questo lavoro si prova che un sistema ortogonale di funzioni di Bessel è una base nello spazio di Banach Lβp(0,1), p>1, -1<β<p-1. Se ne deduce che la serie di Dini di ogni funzione fLβp converge a f nella norma di Lβp. Inoltre si dimostra, tramite un controesempio, che se la condizione 1<β<p-1 non è soddisfatta esiste una funzione di questa classe la cui serie di Dini diverge.

Publié le : 1977-03-01
@article{RLINA_1977_8_62_3_305_0,
     author = {S.R. Agrawal and C.M. Patel},
     title = {On the mean convergence of Dini series},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {62},
     year = {1977},
     pages = {305-315},
     zbl = {0372.42009},
     mrnumber = {0497652},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLINA_1977_8_62_3_305_0}
}
Agrawal, S.R.; Patel, C.M. On the mean convergence of Dini series. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 62 (1977) pp. 305-315. http://gdmltest.u-ga.fr/item/RLINA_1977_8_62_3_305_0/

[1] Alexits, G. (1961) - Convergence problems of orthogonal series, Pergamon Press, New York. | MR 218827 | Zbl 0098.27403

[2] Babenko, K. I. (1948) - On conjugate functions, «Doklady Akad. Nauk SSSR (N.S.)», 62, 157-160. | MR 27093

[3] Gol'Dman, M. L. (1971) - Fourier-Bessel series for functions integrable with weight, «Differencial'nye Uravnenija», 7, 1617-1628. | MR 298325

[4] Hardy, G. H. and Littlewood, J. E. (1936) - Some more theorems concerning Fourier series and Fourier Power series, «Duke Math. J.», 2, 354-382. | MR 1545928 | Zbl 0014.21402

[5] Moore, C. N. (1911) - On the uniform convergence of the development in Bessel series, «Trans. Amer. Math. Soc.», 12, 181-206. | MR 1500886

[6] Pollard, H. (1948) - The mean convergence of orthogonal series. II, «Trans. Amer. Math. Soc.», 63, 355-367. | MR 23941 | Zbl 0032.40601

[7] Taylor, A. E. (1961) - Introduction to functional analysis, John Wiley and Sons, Inc., N.Y.. | MR 98966

[8] Watson, G. N. (1952) - A treatise on the theory of Bessel functions, Cambridge University Press. | MR 10746

[9] Young, W. H. (1919-20) - On series of Bessel functions, «Proc. London Math. Soc.», 18, 163-200. | MR 1576049