It is shown that, if is a closed curve of a projective and denotes any other closed curve lying on the developable surface circumscribed to , it is possible to attach to and a projective integral invariant, , having a simple metrical definition (given in n. 3, Cor. I). Moreover, it is proved (Theor. VII and Cor. II) that this invariant vanishes whenever is semialgebraic (i.e., obtainable as the intersection of with an algebraic primal of ) and that, if , remains unchanged when and are substituted by their projections from an arbitrary on an of skew to . Further similar results are previously obtained, by using certain preliminary simple properties (cf. Theorems I and II), in connection with , and a third closed curve lying on .
@article{RLINA_1976_8_61_5_420_0, author = {Beniamino Segre}, title = {Invarianti proiettivi integrali inerenti a certe coppie o terne di curve chiuse}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {60}, year = {1976}, pages = {420-427}, zbl = {0374.53003}, mrnumber = {0642215}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1976_8_61_5_420_0} }
Segre, Beniamino. Invarianti proiettivi integrali inerenti a certe coppie o terne di curve chiuse. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 60 (1976) pp. 420-427. http://gdmltest.u-ga.fr/item/RLINA_1976_8_61_5_420_0/
[1] Sul carattere proiettivo del rapporto plurisezionale, «Rend. Acc. Naz. Lincei», (8), 52, 150-155. | MR 326557 | Zbl 0239.50011
(1972) -[2] Su alcune proprietà del rapporto plurisezionale, «Rendic. di Mat.» (5)» 3 , 90-97. | MR 18843 | Zbl 68.0347.03
(1942) -