Un teorema di non esistenza per una classe di grafi planari
Ruscitti, Aldo
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 60 (1976), p. 323-328 / Harvested from Biblioteca Digitale Italiana di Matematica

Let Fn,n-1 denote the set of all maximal planar graphs with exactly n—1 vertices of degree five and one of degree n—7. In this article we prove and extend a conjecture stated by R. H. Fox: i.e. that for n>13 the set Fn,n-1 is empty.

Publié le : 1976-11-01
@article{RLINA_1976_8_61_5_323_0,
     author = {Aldo Ruscitti},
     title = {Un teorema di non esistenza per una classe di grafi planari},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
     volume = {60},
     year = {1976},
     pages = {323-328},
     zbl = {0371.05006},
     mrnumber = {0498202},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLINA_1976_8_61_5_323_0}
}
Ruscitti, Aldo. Un teorema di non esistenza per una classe di grafi planari. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 60 (1976) pp. 323-328. http://gdmltest.u-ga.fr/item/RLINA_1976_8_61_5_323_0/

[1] Alpert, S. R. e Gross, J. L. (1975) - Graph imbedding problems, «The Am. Math. Monthly», 82, 835-837. | MR 398871 | Zbl 0337.05108

[2] Birkhoff, G. D. (1913) - The reducibility of maps, «Am. J. Math.», 35, 115-128. | MR 1506176 | Zbl 44.0568.01

[3] Errera, M. (1925) — Une contribution au problème des quatre couleurs, «Bull, de la Soc. Math, de France», 53, 42-55. | MR 1504874 | Zbl 51.0447.06

[4] Ore, O. (1967) - Four-color problem, New York, Academic Press. | MR 216979 | Zbl 0149.21101

[5] Ringel, G. (1974) - Map color theorem, Berlin, Springer-Verlag. | MR 349461 | Zbl 0287.05102

[6] Ruscitti, A. (1976) - Un metodo canonico di costruzione e riduzione relativo a grafi planari massimali, «Calcolo», 13, 157-171. | MR 453574 | Zbl 0339.05103

[7] Ruscitti, A. - Sui grafi planari internamente triangolati. Inviato per pubblicazione a «Calcolo».

[8] Ruscitti, A. - Su di un problema di A. M. Hobbs. In corso di stampa su «Calcolo». | MR 498201