Gli Autori migliorano alcuni risultati ottenuti in precedenza da uno di essi (B. P. Mishra) relativi alle sommazioni delle serie del tipo di Abel.
@article{RLINA_1976_8_60_3_219_0, author = {Babban Prasad Mishra and Dinesh Singh}, title = {Some theorems on Abel type summability methods}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {60}, year = {1976}, pages = {219-223}, zbl = {0364.40007}, mrnumber = {0463749}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1976_8_60_3_219_0} }
Mishra, Babban Prasad; Singh, Dinesh. Some theorems on Abel type summability methods. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 60 (1976) pp. 219-223. http://gdmltest.u-ga.fr/item/RLINA_1976_8_60_3_219_0/
[1] On a scale of Abel type summability methods, «Proc. Cambridge Phil. Soc.», 53, 319-322. | MR 86158 | Zbl 0082.27602
(1957) -[2] On an extension of absolute summability and some theorems of Littlewood and Paley, «Proc, London Math. Soc.», 7, 113-141. | MR 86912 | Zbl 0109.04402
(1957) -[3] Some generalizations of Taubers theorem, «Quart. J. Math. Oxford», 10, 70-80. | MR 130510 | Zbl 0087.05303
(1959) -[4] Some theorems on power series, «Proc. London Math. Soc.», 7, 211-218. | MR 86913 | Zbl 0088.28201
(1957) -[5] Inequalities. (Cambridge), 229. | MR 46395
, and (1959) -[6] Sommation des series et integrales divergentes par les moyennes arithmétiques et typiques (Paris). | Zbl 0003.00701
(1931) -[7] On some generalizations of Abel summability, «L'Enseignement mathématique», 15, 209-215. | MR 251403 | Zbl 0176.01602
(1969) -[8] Strong summability of infinite series on a scale of Abele type summability methods, «Proc. Cambridge Philos. Soc.», 63, 119-127. | MR 203303
(1967) -[9] Absolute summability of infinite series on a scale of Abel type summability, «Proc. Cambridge Philos. Soc.», 64, 377-387. | MR 222513
(1967) -[10] Some Tauberian theorems on a scale of A bel type summability methods, «Proc. Cambridge Philos. Soc.», 68, 401-414. | MR 262733
(1970) -