Gli Autori considerano l'equazione con , continue in , , continue in e sotto opportune condizioni per , , provano che tutte le soluzioni della (1) sono oscillanti.
@article{RLINA_1975_8_59_6_702_0, author = {Gary D. Jones and Samuel M. Rankin}, title = {Oscillation of a forced nonlinear second order differential equation}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {59}, year = {1975}, pages = {702-705}, zbl = {0399.34029}, mrnumber = {0481264}, language = {en}, url = {http://dml.mathdoc.fr/item/RLINA_1975_8_59_6_702_0} }
Jones, Gary D.; Rankin, Samuel M. Oscillation of a forced nonlinear second order differential equation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 702-705. http://gdmltest.u-ga.fr/item/RLINA_1975_8_59_6_702_0/
[1] On second order differential inequalities, «Proc. R.S.E.(A)», 72 (8), 109-127. | MR 402175
(1972/73) -[2] On the maintenance of oscillations of nth order equations under the effect of a small forcing term, «Journal of Differential Equations», 10, 355-363. | MR 288358 | Zbl 0211.11902
(1971) -[3] Maintenance of oscillations under the effect of a periodic forcing term, «Proc. Am. Math. Soc.», 33, 377-383. | MR 330622 | Zbl 0234.34040
(1972) -[4] Perturbations causing oscillations of functional-differential equations, «Proc. Am. Math. Soc.», 43, 111-117. | MR 328270 | Zbl 0291.34051
and (1974) -[5] Oscillation of a forced second order non-linear differential equation. «Proc. Am. Math. Soc.», 38, July, 1976. | MR 414997
(1975) -[6] H. Jr. TEUFEL (1972) - Forced second-order non-linear oscillations, «J. Math Anal. Applic.», 40, 148-152. | MR 313583 | Zbl 0237.34060