In this paper the author considers the entire, positive or negative, solutions of the equation , and establishes various formulas expressing the unknowns by means of two, three or four arbitrary parameters. The question has geometrical interest for the determination of the rational points of the cubic surface .
@article{RLINA_1975_8_59_6_635_0, author = {Cataldo Agostinelli}, title = {Sulla risoluzione per numeri interi della equazione $x^{3} + y^{3} + z^{3} = u^{3}$}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti}, volume = {59}, year = {1975}, pages = {635-642}, zbl = {0356.10012}, mrnumber = {0480324}, language = {it}, url = {http://dml.mathdoc.fr/item/RLINA_1975_8_59_6_635_0} }
Agostinelli, Cataldo. Sulla risoluzione per numeri interi della equazione $x^{3} + y^{3} + z^{3} = u^{3}$. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Tome 59 (1975) pp. 635-642. http://gdmltest.u-ga.fr/item/RLINA_1975_8_59_6_635_0/
[1] Elementary theory of numbers, Chap. XI. Warszawa. | MR 47060
(1964) -[2] Opera omnia (1), I, 490-7.
-[3] History of the theory of numbers, vol. II, Chap. XXI, p. 552. Washington. | MR 245501 | Zbl 47.0888.08
(1920) -[4] On sums of three cubes, «J. London Math. Soc.», 17, 139-144. | MR 7761 | Zbl 68.0067.03
(1942) -[5] A note on arithmetical properties of cubic surfaces, «J. London Math. Soc.», 18, 24-31; (1943) - On a parametric solution of the equation and on ternary forms representing every rational number, «J. London Math Soc.», 18, 31-34; (1944) - On arithmetical properties of singular cubic surface, «J. London Math. Soc.», 19, 24-91; (1949) - Sur les points entiers des surfaces cubiques. «Colloque Internat. d'Algèbre et theory on numbers», Paris 81-82; - On the rational solutions of homogeneon. cubic equations in four variables, «Mathematical Notae», 11 (1-2); (1942) - The non singular cubic surfaces. Claredon Press. | MR 9471
(1943) -